scholarly journals Simulation of Magnetizing Inrush Current of Three-Phase Three-Legged Transformers by Direct Measurement of Coils Inductance

Author(s):  
C. Sánchez-Martos ◽  
M. Gómez-González ◽  
F. Jurado
2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Maofa Gong ◽  
Ran Zheng ◽  
Linyuan Hou ◽  
Jingyu Wei ◽  
Na Wu

Magnetizing inrush current can lead to the maloperation of transformer differential protection. To overcome such an issue, a method is proposed to distinguish inrush current from inner fault current based on box dimension. According to the fundamental difference in waveform between the two, the algorithm can extract the three-phase current and calculate its box dimensions. If the box dimension value is smaller than the setting value, it is the inrush current; otherwise, it is inner fault current. Using PSACD and MATLAB, the simulation has been performed to prove the efficiency reliability of the presented algorithm in distinguishing inrush current and fault current.


1970 ◽  
Vol 108 (2) ◽  
pp. 67-70 ◽  
Author(s):  
M. Jamali ◽  
M. Mirzaie ◽  
S. Asghar-Gholamian

Energization of a transformer under no load or lightly loaded conditions may result in inrush current with high amplitude that can be comparable with the fault currents. These currents have undesirable effects, including malfunction of the differential relay, mechanical and thermal stresses on transformer and reduced power quality of the system. In this paper, a sequential phase energization technique has been used to mitigate magnetizing inrush current in a grounded system. Because in this technique, the size of the resistor, which is connected to the neutral point of the transformer, has an important role, analytical formulas have been derived to calculate inrush current amplitude with a neutral resistor. These analytical formulas have been implemented in the M-File of the MATLAB software for calculation of different inrush current reduction ratio. Then for the verification of the results, the obtained neutral resistor has beenapplied to the equivalent circuit of a typical three-phase transformer and inrush current reduction has been determined by MATLAB SIMULINK. Ill. 7, bibl. 13 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.108.2.147


2010 ◽  
Vol 130 (4) ◽  
pp. 430-436 ◽  
Author(s):  
Naoki Dou ◽  
Atushi Toyama ◽  
Kohki Satoh ◽  
Tadashi Naitoh ◽  
Kazuyuki Masaki

2012 ◽  
Vol 132 (6) ◽  
pp. 588-596
Author(s):  
Tadashi Naitoh ◽  
Keiki Takeda ◽  
Atsushi Toyama ◽  
Tatsuhiko Maeda

2012 ◽  
Vol 132 (3) ◽  
pp. 260-267 ◽  
Author(s):  
Tatsuhiko Maeda ◽  
Tadashi Naitoh ◽  
Atsushi Toyama ◽  
Keiki Takeda

Sign in / Sign up

Export Citation Format

Share Document