scholarly journals Genetic testing for Refsum disease

2017 ◽  
Vol 1 (s1) ◽  
pp. 89-91
Author(s):  
Andi Abeshi ◽  
Alessandra Zulian ◽  
Tommaso Beccari ◽  
Munis Dundar ◽  
Fabiana D’Esposito ◽  
...  

Abstract We reviewed the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Refsum disease. The disease has autosomal recessive inheritance, unknown prevalence, and is caused by variations in PEX7 and PHYH genes. Clinical diagnosis is based on clinical findings, ophthalmological examination, electroretinography, optical coherence tomography and phytanic acid assay. The genetic test is useful for confirming diagnosis, for differential diagnosis, couple risk assessment and access to clinical trials.

2017 ◽  
Vol 1 (s1) ◽  
pp. 48-50
Author(s):  
Andi Abeshi ◽  
Carla Marinelli ◽  
Tommaso Beccari ◽  
Munis Dundar ◽  
Fabiana D’Esposito ◽  
...  

Abstract We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for enhanced S-cone syndrome (ESCS). The disease has autosomal recessive inheritance, a prevalence of less than one per million, and is caused by mutations in the NR2E3 gene. Clinical diagnosis is based on clinical findings, ophthalmological examination, electroretinography, color vision testing and optical coherence tomography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.


2017 ◽  
Vol 1 (s1) ◽  
pp. 74-76
Author(s):  
Andi Abeshi ◽  
Pamela Coppola ◽  
Tommaso Beccari ◽  
Munis Dundar ◽  
Leonardo Colombo ◽  
...  

Abstract We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Mendelian myopia (MM), a large and heterogeneous group of inherited refraction disorders. Variations in the SLC39A5, SCO2 and COL2A1 genes have an autosomal dominant transmission, whereas those in the LRPAP1, P3H2, LRP2 and SLITRK6 genes have autosomal recessive transmission. The prevalence of MM is currently unknown. Clinical diagnosis is based on clinical findings, family history, ophthalmological examination and other tests depending on complications. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.


2017 ◽  
Vol 1 (s1) ◽  
pp. 20-22
Author(s):  
Andi Abeshi ◽  
Alice Bruson ◽  
Tommaso Beccari ◽  
Munis Dundar ◽  
Lucia Ziccardi ◽  
...  

Abstract We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for Bietti crystalline dystrophy (BCD). The disease has autosomal recessive inheritance, a prevalence of 1 per 67 000, and is caused by mutations in the CYP4V2 gene. Clinical diagnosis is based on clinical findings, ophthalmological examination, electroretinography and optical coherence tomography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.


2017 ◽  
Vol 1 (s1) ◽  
pp. 41-44
Author(s):  
Andi Abeshi ◽  
Francesca Fanelli ◽  
Tommaso Beccari ◽  
Munis Dundar ◽  
Francesco Viola ◽  
...  

Abstract We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for corneal dystrophies and other Mendelian corneal diseases (CDs). CDs are mostly inherited in an autosomal dominant manner (autosomal recessive inheritance is rare). The overall prevalence is currently unknown. CDs are caused by mutations in the AGBL1, CHST6, COL8A2, DCN, GSN, KRT12, KRT3, NLRP1, PAX6, PIKFYVE, PRDM5, SLC4A11, TACSTD2, TCF4, TGFBI, UBIAD1, VSX1, ZEB1, and ZNF469 genes. Clinical diagnosis is based on clinical findings, ophthalmological examination, confocal microscopy and slit-lamp biomicroscopy. The genetic test is useful for confirming diagnosis and for differential diagnosis, couple risk assessment and access to clinical trials.


2017 ◽  
Vol 1 (s1) ◽  
pp. 60-62
Author(s):  
Andi Abeshi ◽  
Francesca Fanelli ◽  
Tommaso Beccari ◽  
Munis Dundar ◽  
Leonardo Colombo ◽  
...  

Abstract We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Inherited eye misalignment (IEM). Forms of IEM associated with variations in the SALL4, CHN1, TUBB3 and KIF21A genes have autosomal dominant inheritance, whereas those associated with variations in the ROBO3, PHOX2A, HOXA1 and HOXB1 genes have autosomal recessive inheritance. The prevalence of MS is currently unknown. Diagnosis is based on clinical findings, family history, visual acuity testing and fundus examination. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.


2017 ◽  
Vol 1 (s1) ◽  
pp. 80-82
Author(s):  
Andi Abeshi ◽  
Carla Marinelli ◽  
Tommaso Beccari ◽  
Munis Dundar ◽  
Benedetto Falsini ◽  
...  

Abstract We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for ocular albinism and oculocutaneous albinism. Ocular albinism has X-linked recessive inheritance, with a prevalence that varies from 1/40000 to 1/1000000, and is caused by mutations in the GPR143 and CACNA1F genes. Oculocutaneous albinism has autosomal recessive inheritance, with an overall prevalence of 1/17000, and is caused by mutations in the TYR, OCA2, TYRP1, SLC45A2, SLC24A5 and C10orf11 genes. Clinical diagnosis involves ophthalmological examination, testing of visually evoked potentials (VEP) and electrophysiological testing (ERG). The genetic test is useful for confirming diagnosis, differential diagnosis, for couple risk assessment and access to clinical trials.


2017 ◽  
Vol 1 (s1) ◽  
pp. 35-37
Author(s):  
Andi Abeshi ◽  
Alessandra Zulian ◽  
Tommaso Beccari ◽  
Munis Dundar ◽  
Lucia Ziccardi ◽  
...  

Abstract We studied the scientific literature and disease guidelines in order to summarize the clinical utility of the genetic test for cone rod dystrophies (CORDs). CORDs are caused by variations in the ABCA4, ADAM9, AIPL1, C8orf37, CACNA1F, CACNA2D4, CDHR1, CNGA3, CRX, DRAM2, GUCA1A, GUCY2D, HRG4, KCNV2, PDE6C, PITPNM3, POC1B, PROM1, PRPH2, RAB28, RAX2, RIMS1, RPGRIP1, RPGR SEMA4A, TTLL5 genes, with an overall prevalence of 1 per 40 000. Most genes have autosomal recessive inheritance; the others have autosomal dominant or X-linked recessive transmission. Clinical diagnosis is based on clinical findings, color vision testing, ophthalmological examination and electroretinography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.


2017 ◽  
Vol 1 (s1) ◽  
pp. 51-53 ◽  
Author(s):  
Andi Abeshi ◽  
Carla Marinelli ◽  
Tommaso Beccari ◽  
Munis Dundar ◽  
Leonardo Colombo ◽  
...  

Abstract We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for familial exudative vitreoretinopathy (FEVR). There is insufficient data to determine the prevalence of FEVR. Variations in the FZD4 (OMIM gene: 604579; OMIM disease: 133780), TSPAN12 (OMIM gene: 613138; OMIM disease: 613310) and ZNF408 (OMIM gene: 616454; OMIM disease: 616468) genes have autosomal dominant inheritance, whereas variations in LRP5 (OMIM gene: 603506; OMIM disease: 601813) have autosomal dominant or recessive inheritance and variations in NDP (OMIM gene: 300658; OMIM disease: 305390) have X-linked inheritance. Clinical diagnosis is based on clinical findings, family history, ophthalmological examination, fundoscopy, slit-lamp examination and fluorescein angiography. The genetic test is useful for confirming diagnosis and for differential diagnosis, couple risk assessment and access to clinical trials.


2017 ◽  
Vol 1 (s1) ◽  
pp. 29-31 ◽  
Author(s):  
Andi Abeshi ◽  
Carla Marinelli ◽  
Tommaso Beccari ◽  
Munis Dundar ◽  
Leonardo Colombo ◽  
...  

Abstract We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for ocular coloboma (COI). COI is inherited in an autosomal dominant manner associated with variations in the PAX6, ABCB6 and FZD5 genes and in an autosomal recessive manner associated with variations in the SALL2 gene. Overall prevalence is 1 per 100,000 live births. Clinical diagnosis is based on clinical findings, ophthalmogical examination, family history, fundus examination and electroretinography. The genetic test is useful for confirming diagnosis, and for differential diagnosis, couple risk assessment and access to clinical trials.


2017 ◽  
Vol 1 (s1) ◽  
pp. 63-65
Author(s):  
Andi Abeshi ◽  
Pamela Coppola ◽  
Tommaso Beccari ◽  
Munis Dundar ◽  
Benedetto Falsini ◽  
...  

Abstract We studied the scientific literature and disease guidelines in order to summarize the clinical utility of genetic testing for Leber congenital amaurosis (LCA). LCA is mostly inherited in an autosomal recessive manner, rarely in an autosomal dominant manner, with an overall prevalence of 2-3/100,000 live births, and is caused by mutations in the AIPL1, CEP290, CRB1, CRX, GDF6, GUCY2D, IFT140, IMPDH1, IQCB1, KCNJ13, LCA5, LRAT, NMNAT1, RD3, RDH12, RPE65, RPGRIP1, SPATA7 and TULP1 genes. Clinical diagnosis involves ophthalmological examination and electrophysiological testing (electroretinography - ERG). The genetic test is useful for confirmation of diagnosis, differential diagnosis, couple risk assessment and access to clinical trials.


Sign in / Sign up

Export Citation Format

Share Document