scholarly journals Fractional Hadamard and Fejer-Hadamard inequalities for exponentially m-convex function

2021 ◽  
Vol 66 (4) ◽  
pp. 629-640
Author(s):  
Sajid Mehmood ◽  
◽  
Ghulam Farid ◽  

Fractional integral operators play a vital role in the advancement of mathematical inequalities. The aim of this paper is to present the Hadamard and the Fej er-Hadamard inequalities for generalized fractional integral operators con- taining Mittag-Le er function. Exponentially m-convexity is utilized to establish these inequalities. By xing parameters involved in the Mittag-Le er function Hadamard and the Fej er-Hadamard inequalities for various well known fractional integral operators can be obtained.

2019 ◽  
Vol 3 (2) ◽  
pp. 29
Author(s):  
Seren Salaş ◽  
Yeter Erdaş ◽  
Tekin Toplu ◽  
Erhan Set

In this paper, firstly we have established a new generalization of Hermite–Hadamard inequality via p-convex function and fractional integral operators which generalize the Riemann–Liouville fractional integral operators introduced by Raina, Lun and Agarwal. Secondly, we proved a new identity involving this generalized fractional integral operators. Then, by using this identity, a new generalization of Hermite–Hadamard type inequalities for fractional integral are obtained.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Chahn Yong Jung ◽  
Muhammad Yussouf ◽  
Yu-Ming Chu ◽  
Ghulam Farid ◽  
Shin Min Kang

In this paper, we define a new function, namely, harmonically α , h − m -convex function, which unifies various kinds of harmonically convex functions. Generalized versions of the Hadamard and the Fejér–Hadamard fractional integral inequalities for harmonically α , h − m -convex functions via generalized fractional integral operators are proved. From presented results, a series of fractional integral inequalities can be obtained for harmonically convex, harmonically h − m -convex, harmonically α , m -convex, and related functions and for already known fractional integral operators.


2019 ◽  
Vol 3 (2) ◽  
pp. 32
Author(s):  
Marcela V. Mihai ◽  
Muhammad Uzair Awan ◽  
Muhammad Aslam Noor ◽  
Tingsong Du ◽  
Artion Kashuri ◽  
...  

In this paper, we introduce and investigate generalized fractional integral operators containing the new generalized Mittag–Leffler function of two variables. We establish several new refinements of Hermite–Hadamard-like inequalities via co-ordinated convex functions.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Hendra Gunawan ◽  
Denny Ivanal Hakim ◽  
Yoshihiro Sawano ◽  
Idha Sihwaningrum

We prove weak type inequalities for some integral operators, especially generalized fractional integral operators, on generalized Morrey spaces of nonhomogeneous type. The inequality for generalized fractional integral operators is proved by using two different techniques: one uses the Chebyshev inequality and some inequalities involving the modified Hardy-Littlewood maximal operator and the other uses a Hedberg type inequality and weak type inequalities for the modified Hardy-Littlewood maximal operator. Our results generalize the weak type inequalities for fractional integral operators on generalized non-homogeneous Morrey spaces and extend to some singular integral operators. In addition, we also prove the boundedness of generalized fractional integral operators on generalized non-homogeneous Orlicz-Morrey spaces.


Sign in / Sign up

Export Citation Format

Share Document