scholarly journals Predicting Shear Wave Velocity of Soil Using Multiple Linear Regression Analysis and Artificial Neural Networks

2017 ◽  
Vol 0 (0) ◽  
pp. 0-0 ◽  
Author(s):  
OMOLBANIN ATAEE ◽  
NASER HAFEZI MOGHADDAS ◽  
GHOLAM REZA LASHKARI POUR ◽  
MEHDI J ABBARI NOOGHABI

Author(s):  
Muhammad Rois Rois ◽  
Manarotul Fatati Fatati ◽  
Winda Ihda Magfiroh

This study aims to determine the effect of Inflation, Exchange Rate and Composite Stock Price Index (IHSG) to Return of PT Nikko Securities Indonesia Stock Fund period 2014-2017. The study used secondary data obtained through documentation in the form of PT Nikko Securities Indonesia Monthly Net Asset (NAB) report. Data analysis is used with quantitative analysis, multiple linear regression analysis using eviews 9. Population and sample in this research are PT Nikko Securities Indonesia. The result of multiple linear regression analysis was the coefficient of determination (R2) showed the result of 0.123819 or 12%. This means that the Inflation, Exchange Rate and Composite Stock Price Index (IHSG) variables can influence the return of PT Nikko Securities Indonesia's equity fund of 12% and 88% is influenced by other variables. Based on the result of the research, the variables of inflation and exchange rate have a negative and significant effect toward the return of PT Nikko Securities Indonesia's equity fund. While the variable of Composite Stock Price Index (IHSG) has a negative but not significant effect toward Return of Equity Fund of PT Nikko Securities Indonesia



Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Rahel Jedamski ◽  
Jérémy Epp

Non-destructive determination of workpiece properties after heat treatment is of great interest in the context of quality control in production but also for prevention of damage in subsequent grinding process. Micromagnetic methods offer good possibilities, but must first be calibrated with reference analyses on known states. This work compares the accuracy and reliability of different calibration methods for non-destructive evaluation of carburizing depth and surface hardness of carburized steel. Linear regression analysis is used in comparison with new methods based on artificial neural networks. The comparison shows a slight advantage of neural network method and potential for further optimization of both approaches. The quality of the results can be influenced, among others, by the number of teaching steps for the neural network, whereas more teaching steps does not always lead to an improvement of accuracy for conditions not included in the initial calibration.



Sign in / Sign up

Export Citation Format

Share Document