scholarly journals Non-Destructive Micromagnetic Determination of Hardness and Case Hardening Depth Using Linear Regression Analysis and Artificial Neural Networks

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Rahel Jedamski ◽  
Jérémy Epp

Non-destructive determination of workpiece properties after heat treatment is of great interest in the context of quality control in production but also for prevention of damage in subsequent grinding process. Micromagnetic methods offer good possibilities, but must first be calibrated with reference analyses on known states. This work compares the accuracy and reliability of different calibration methods for non-destructive evaluation of carburizing depth and surface hardness of carburized steel. Linear regression analysis is used in comparison with new methods based on artificial neural networks. The comparison shows a slight advantage of neural network method and potential for further optimization of both approaches. The quality of the results can be influenced, among others, by the number of teaching steps for the neural network, whereas more teaching steps does not always lead to an improvement of accuracy for conditions not included in the initial calibration.

2015 ◽  
Vol 756 ◽  
pp. 507-512
Author(s):  
S.N. Danilin ◽  
M.V. Makarov ◽  
S.A. Shchanikov

The article deals with the problem of calculating the fault tolerance of neural network components of industrial controlling and measuring systems used in mechanical engineering. We have formulated a general approach to developing methods for quantitative determination of the level of the fault tolerance of artificial neural networks with any structure and function. We have studied the fault tolerance of four artificial feedforward neural networks as well as the correlation between the result of determining the fault tolerance level and a selected performance parameter of artificial neural networks.


2020 ◽  
Vol 3 (2) ◽  
pp. 83
Author(s):  
Muhammad Agung Nugraha ◽  
Farizal Farizal ◽  
Djoko Sihono Gabriel

This study aims to create an effective forecasting model in predicting sales of car products in the B2B segment (Business to Business) to obtain estimates of product sales in the future. This research uses multiple linear regression and artificial neural networks that are optimized by genetic algorithms. Forecasting factors for car sales are generally issued by total national car sales, the Consumer Price Index, the Consumer Confidence Index, the Inflation Rate, Gross Domestic Product (GDP), and Fuel Oil Price. The author has also gotten the factors that play a role in the sale of B2B segment by diverting the survey to 106 DMU (Decision Making Unit) who decide to purchase cars in their company. Then we evaluate the results of the questionnaire in training data and simulations on the Artificial Neural Network. Optimized Artificial Neural Networks with Genetic Algorithms can improve B2B segment car sales' accuracy when comparing error values in the ordinary Artificial Neural Network and Multiple Linear Regression.


2018 ◽  
Vol 26 (1) ◽  
pp. 11-15 ◽  
Author(s):  
P. V. Lykhovyd

Artificial neural networks and linear regression are widely used in particularly all branches of science for modeling and prediction. Linear regression is an old data processing tool, and artificial neural networks are a comparatively new one. The goal of the study was to determine whether artificial neural networks are more accurate than linear regression in sweet corn yield prediction. In the study we used a dataset obtained from field experiments on the technological improvement of sweet corn cultivation. The field experiments were conducted during the period from 2014 to 2016 on dark-chestnut soil under drip irrigated conditions in the Steppe Zone of Ukraine. We studied the impact of the moldboard plowing depths, mineral fertilizer application rates and plant densities on the crop yield. A significant impact of all the studied factors on the sweet corn productivity was proved by using the analysis of variance. The highest yield of sweet corn ears without husks (10.93 t ha–1) was under the moldboard plowing at the depth of 20–22 cm, mineral fertilizers application rate of N120P120, plant density of 65,000 plants ha–1. Data processing by using the linear regression and artificial neural network methods showed that the latter is a great deal better than linear regression in sweet corn yield prediction. Higher accuracy of the artificial neural network prediction was proved by the higher value of the coefficient of determination (R2) – 0.978, in comparison to 0.897 for the linear regression prediction model. We conclude that artificial neural networks are a much better data processing tool, especially, in the life sciences and for prediction of the non-linear natural processes and phenomena. The main disadvantage of the neural network models is their “black box” nature. However, linear regression will not lose its popularity among scientists in the nearest future. Linear regression is a much simpler data analysis tool, it is easier to perform the prediction, but it still provides a sufficiently high level of accuracy.


Sign in / Sign up

Export Citation Format

Share Document