scholarly journals On Regression Estimators Using Extreme Ranked Set Samples

Author(s):  
Hani M. Samawi ◽  
Ahmed Y.A. Al-Samarraie ◽  
Obaid M. Al-Saidy

Regression is used to estimate the population mean of the response variable, , in the two cases where the population mean of the concomitant (auxiliary) variable, , is known and where it is unknown. In the latter case, a double sampling method is used to estimate the population mean of the concomitant variable. We invesitagate the performance of the two methods using extreme ranked set sampling (ERSS), as discussed by Samawi et al. (1996). Theoretical and Monte Carlo evaluation results as well as an illustration using actual data are presented. The results show that if the underlying joint distribution of and  is symmetric, then using ERSS to obtain regression estimates is more efficient than using ranked set sampling (RSS) or  simple random sampling (SRS).  

Author(s):  
Chunxian Long ◽  
Wangxue Chen ◽  
Rui Yang ◽  
Dongsen Yao

Cost-effective sampling design is a problem of major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time-consuming. In this article, we investigate ratio-type estimators of the population mean of the study variable, involving either the first or the third quartile of the auxiliary variable, using ranked set sampling (RSS) and extreme ranked set sampling (ERSS) schemes. The properties of the estimators are obtained. The estimators in RSS and ERSS are compared to their counterparts in simple random sampling (SRS) for normal data. The numerical results show that the estimators in RSS and ERSS are significantly more efficient than their counterparts in SRS.


2016 ◽  
Vol 42 (3) ◽  
pp. 161-179 ◽  
Author(s):  
Ahmed Ali Hanandeh ◽  
Mohammad Fraiwan Al-Saleh

The purpose of this paper is to estimate the parameters of Downton’sbivariate exponential distribution using moving extreme ranked set sampling(MERSS). The estimators obtained are compared via their biases andmean square errors to their counterparts using simple random sampling (SRS).Monte Carlo simulations are used whenever analytical comparisons are difficult.It is shown that these estimators based on MERSS with a concomitantvariable are more efficient than the corresponding ones using SRS. Also,MERSS with a concomitant variable is easier to use in practice than RSS witha concomitant variable. Furthermore, the best unbiased estimators among allunbiased linear combinations of the MERSS elements are derived for someparameters.


2020 ◽  
Vol 16 (1) ◽  
pp. 61-75
Author(s):  
S. Baghel ◽  
S. K. Yadav

AbstractThe present paper provides a remedy for improved estimation of population mean of a study variable, using the information related to an auxiliary variable in the situations under Simple Random Sampling Scheme. We suggest a new class of estimators of population mean and the Bias and MSE of the class are derived upto the first order of approximation. The least value of the MSE for the suggested class of estimators is also obtained for the optimum value of the characterizing scaler. The MSE has also been compared with the considered existing competing estimators both theoretically and empirically. The theoretical conditions for the increased efficiency of the proposed class, compared to the competing estimators, is verified using a natural population.


Author(s):  
Hani M. Samawi ◽  
Eman M. Tawalbeh

The performance of a regression estimator based on the double ranked set sample (DRSS) scheme, introduced by Al-Saleh and Al-Kadiri (2000), is investigated when the mean of the auxiliary variable X is unknown. Our primary analysis and simulation indicates that using the DRSS regression estimator for estimating the population mean substantially increases relative efficiency compared to using regression estimator based on simple random sampling (SRS) or ranked set sampling (RSS) (Yu and Lam, 1997) regression estimator.  Moreover, the regression estimator using DRSS is also more efficient than the naïve estimators of the population mean using SRS, RSS (when the correlation coefficient is at least 0.4) and DRSS for high correlation coefficient (at least 0.91.) The theory is illustrated using a real data set of trees.  


2021 ◽  
Vol 7 (3) ◽  
pp. 4592-4613
Author(s):  
Sohaib Ahmad ◽  
◽  
Sardar Hussain ◽  
Muhammad Aamir ◽  
Faridoon Khan ◽  
...  

<abstract><p>This paper addresses the issue of estimating the population mean for non-response using simple random sampling. A new family of estimators is proposed for estimating the population mean with auxiliary information on the sample mean and the rank of the auxiliary variable. Bias and mean square errors of existing and proposed estimators are obtained using the first order of measurement. Theoretical comparisons are made of the performance of the proposed and existing estimators. We show that the proposed family of estimators is more efficient than existing estimators in the literature under the given constraints using these theoretical comparisons.</p></abstract>


2021 ◽  
Vol 17 (2) ◽  
pp. 75-90
Author(s):  
B. Prashanth ◽  
K. Nagendra Naik ◽  
R. Salestina M

Abstract With this article in mind, we have found some results using eigenvalues of graph with sign. It is intriguing to note that these results help us to find the determinant of Normalized Laplacian matrix of signed graph and their coe cients of characteristic polynomial using the number of vertices. Also we found bounds for the lowest value of eigenvalue.


2017 ◽  
Vol 6 (2) ◽  
pp. 21 ◽  
Author(s):  
Carlos N. Bouza ◽  
Amer Ibrahim Al-Omari ◽  
Agustín Santiago ◽  
Jose M. Sautto

In this paper, the behavior of ranked set sampling is analyzed considering the knowledge of the auxiliary variable. The suggested estimators are compared with their simple random sampling counterparts. A numerical study is developed using data from a study developed on the contamination due to burning compost from solid waste from hospitals.


Sign in / Sign up

Export Citation Format

Share Document