scholarly journals Estimation of finite population mean using dual auxiliary variable for non-response using simple random sampling

2021 ◽  
Vol 7 (3) ◽  
pp. 4592-4613
Author(s):  
Sohaib Ahmad ◽  
◽  
Sardar Hussain ◽  
Muhammad Aamir ◽  
Faridoon Khan ◽  
...  

<abstract><p>This paper addresses the issue of estimating the population mean for non-response using simple random sampling. A new family of estimators is proposed for estimating the population mean with auxiliary information on the sample mean and the rank of the auxiliary variable. Bias and mean square errors of existing and proposed estimators are obtained using the first order of measurement. Theoretical comparisons are made of the performance of the proposed and existing estimators. We show that the proposed family of estimators is more efficient than existing estimators in the literature under the given constraints using these theoretical comparisons.</p></abstract>

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Saddam Hussain ◽  
Mi Zichuan ◽  
Sardar Hussain ◽  
Anum Iftikhar ◽  
Muhammad Asif ◽  
...  

In this paper, we proposed two new families of estimators using the supplementary information on the auxiliary variable and exponential function for the population distribution functions in case of nonresponse under simple random sampling. The estimations are done in two nonresponse scenarios. These are nonresponse on study variable and nonresponse on both study and auxiliary variables. As we have highlighted above that two new families of estimators are proposed, in the first family, the mean was used, while in the second family, ranks were used as auxiliary variables. Expression of biases and mean squared error of the proposed and existing estimators are obtained up to the first order of approximation. The performances of the proposed and existing estimators are compared theoretically. On these theoretical comparisons, we demonstrate that the proposed families of estimators are better in performance than the existing estimators available in the literature, under the obtained conditions. Furthermore, these theoretical findings are braced numerically by an empirical study offering the proposed relative efficiencies of the proposed families of estimators.


2020 ◽  
Vol 16 (1) ◽  
pp. 61-75
Author(s):  
S. Baghel ◽  
S. K. Yadav

AbstractThe present paper provides a remedy for improved estimation of population mean of a study variable, using the information related to an auxiliary variable in the situations under Simple Random Sampling Scheme. We suggest a new class of estimators of population mean and the Bias and MSE of the class are derived upto the first order of approximation. The least value of the MSE for the suggested class of estimators is also obtained for the optimum value of the characterizing scaler. The MSE has also been compared with the considered existing competing estimators both theoretically and empirically. The theoretical conditions for the increased efficiency of the proposed class, compared to the competing estimators, is verified using a natural population.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243584
Author(s):  
Sardar Hussain ◽  
Sohaib Ahmad ◽  
Sohail Akhtar ◽  
Amara Javed ◽  
Uzma Yasmeen

In this paper, we propose two new families of estimators for estimating the finite population distribution function in the presence of non-response under simple random sampling. The proposed estimators require information on the sample distribution functions of the study and auxiliary variables, and additional information on either sample mean or ranks of the auxiliary variable. We considered two situations of non-response (i) non-response on both study and auxiliary variables, (ii) non-response occurs only on the study variable. The performance of the proposed estimators are compared with the existing estimators available in the literature, both theoretically and numerically. It is also observed that proposed estimators are more precise than the adapted distribution function estimators in terms of the percentage relative efficiency.


2021 ◽  
Vol 17 (2) ◽  
pp. 75-90
Author(s):  
B. Prashanth ◽  
K. Nagendra Naik ◽  
R. Salestina M

Abstract With this article in mind, we have found some results using eigenvalues of graph with sign. It is intriguing to note that these results help us to find the determinant of Normalized Laplacian matrix of signed graph and their coe cients of characteristic polynomial using the number of vertices. Also we found bounds for the lowest value of eigenvalue.


2018 ◽  
Vol 19 (2) ◽  
pp. 219-238
Author(s):  
Mir Subzar ◽  
Showkat Maqbool ◽  
Tariq Ahmad Raja ◽  
Surya Kant Pal ◽  
Prayas Sharma

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Maria Javed ◽  
Muhammad Irfan ◽  
Sajjad Haider Bhatti ◽  
Ronald Onyango

This study suggests a new optimal family of exponential-type estimators for estimating population mean in stratified random sampling. These estimators are based on the traditional and nontraditional measures of auxiliary information. Expressions for the bias, mean square error, and minimum mean square error of the proposed estimators are derived up to first order of approximation. It is observed that proposed estimators perform better than the traditional estimators (unbiased, combined ratio, and combined regression) and other recent estimators. A real dataset is used to highlight the applicability of proposed estimators. In addition, a simulation study is carried out to assess the performance of new family as compared to other estimators.


Author(s):  
Chunxian Long ◽  
Wangxue Chen ◽  
Rui Yang ◽  
Dongsen Yao

Cost-effective sampling design is a problem of major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time-consuming. In this article, we investigate ratio-type estimators of the population mean of the study variable, involving either the first or the third quartile of the auxiliary variable, using ranked set sampling (RSS) and extreme ranked set sampling (ERSS) schemes. The properties of the estimators are obtained. The estimators in RSS and ERSS are compared to their counterparts in simple random sampling (SRS) for normal data. The numerical results show that the estimators in RSS and ERSS are significantly more efficient than their counterparts in SRS.


Sign in / Sign up

Export Citation Format

Share Document