scholarly journals Computational Solution of Two–Point Boundary Value Problems with Derivative Boundary Conditions using Cubic-Spline Process

Author(s):  
N. Amar Nath et al., N. Amar Nath et al., ◽  
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ji Lin ◽  
Yuhui Zhang ◽  
Chein-Shan Liu

AbstractFor nonlinear third-order three-point boundary value problems (BVPs), we develop two algorithms to find solutions, which automatically satisfy the specified three-point boundary conditions. We construct a boundary shape function (BSF), which is designed to automatically satisfy the boundary conditions and can be employed to develop new algorithms by assigning two different roles of free function in the BSF. In the first algorithm, we let the free functions be complete functions and the BSFs be the new bases of the solution, which not only satisfy the boundary conditions automatically, but also can be used to find solution by a collocation technique. In the second algorithm, we let the BSF be the solution of the BVP and the free function be another new variable, such that we can transform the BVP to a corresponding initial value problem for the new variable, whose initial conditions are given arbitrarily and terminal values are determined by iterations; hence, we can quickly find very accurate solution of nonlinear third-order three-point BVP through a few iterations. Numerical examples confirm the performance of the new algorithms.


Author(s):  
Lawrence Turyn

SynopsisWe discuss smooth changes of eigenvalues under perturbation of the boundary value problems given in the title. The simple eigenvalue criterion is developed in the setting of Banach spaces, so very general perturbations of both the differential equation and the boundary conditions are allowed. Further, we need no assumptions about self-adjointness of the original or perturbed problems. The discussion is concluded with the application of the simple eigenvalue criterion to two examples.


Sign in / Sign up

Export Citation Format

Share Document