scholarly journals Random Stability of Quadratic Functional Equations

2019 ◽  
Vol 16 (1) ◽  
pp. 498-507
Author(s):  
Mee Kwang Kang

In this paper, we investigate the generalized Hyers-Ulam stability on random -normed spaces associated with the following generalized quadratic functional equation ,where  is a fixed positive integer via two methods

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Abasalt Bodaghi ◽  
Sang Og Kim

We obtain the general solution of the generalized mixed additive and quadratic functional equationfx+my+fx−my=2fx−2m2fy+m2f2y,mis even;fx+y+fx−y−2m2−1fy+m2−1f2y,mis odd, for a positive integerm. We establish the Hyers-Ulam stability for these functional equations in non-Archimedean normed spaces whenmis an even positive integer orm=3.


2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
Yang-Hi Lee ◽  
Soon-Mo Jung

We investigate the stability problems for then-dimensional mixed-type additive and quadratic functional equation2f(∑j=1nxj)+∑1≤i,j≤n,  i≠jf(xi-xj)=(n+1)∑j=1nf(xj)+(n-1)∑j=1nf(-xj)in random normed spaces by applying the fixed point method.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Jung Rye Lee ◽  
Jong Su An ◽  
Choonkil Park

LetX,Ybe vector spaces andka fixed positive integer. It is shown that a mappingf(kx+y)+f(kx-y)=2k2f(x)+2f(y)for allx,y∈Xif and only if the mappingf:X→Ysatisfiesf(x+y)+f(x-y)=2f(x)+2f(y)for allx,y∈X. Furthermore, the Hyers-Ulam-Rassias stability of the above functional equation in Banach spaces is proven.


2017 ◽  
pp. 5054-5061
Author(s):  
Seong Sik Kim ◽  
Ga Ya Kim ◽  
Soo Hwan Kim

In this paper, we investigate the stability problem in the spirit of Hyers-Ulam, Rassias and G·avruta for the quadratic functional equation:f(2x + y) + f(2x ¡ y) = 2f(x + y) + 2f(x ¡ y) + 4f(x) ¡ 2f(y) in 2-Banach spaces. These results extend the generalized Hyers-Ulam stability results by thequadratic functional equation in normed spaces to 2-Banach spaces.


Analysis ◽  
2019 ◽  
Vol 39 (3) ◽  
pp. 107-115 ◽  
Author(s):  
Sandra Pinelas ◽  
V. Govindan ◽  
K. Tamilvanan

AbstractIn this paper, we prove the general solution and generalized Hyers–Ulam stability of n-dimensional functional equations of the form\sum_{\begin{subarray}{c}i=1\\ i\neq j\neq k\end{subarray}}^{n}f\biggl{(}-x_{i}-x_{j}-x_{k}+\sum_{% \begin{subarray}{c}l=1\\ l\neq i\neq j\neq k\end{subarray}}^{n}x_{l}\biggr{)}=\biggl{(}\frac{n^{3}-9n^{% 2}+20n-12}{6}\biggr{)}\sum_{i=1}^{n}f(x_{i}),where n is a fixed positive integer with \mathbb{N}-\{0,1,2,3,4\}, in a Banach space via direct and fixed point methods.


2012 ◽  
Vol 10 (01) ◽  
pp. 1220020 ◽  
Author(s):  
JAVAD SHOKRI ◽  
ALI EBADIAN ◽  
RASOUL AGHALARI

We prove the generalized Hyers–Ulam stability of mapping on normed spaces for the following 2-dimensional quadratic functional equation: [Formula: see text] Then we apply the results for investigating the stability of bihomomorphisms and biderivations on normed 3-Lie algebras.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Vediyappan Govindan ◽  
Porpattama Hammachukiattikul ◽  
Grienggrai Rajchakit ◽  
Nallappan Gunasekaran ◽  
R. Vadivel

In this paper, we investigate the general solution of a new quadratic functional equation of the form ∑ 1 ≤ i < j < k ≤ r ϕ l i + l j + l k = r − 2 ∑ i = 1 , i ≠ j r ϕ l i + l j + − r 2 + 3 r − 2 / 2 ∑ i = 1 r ϕ l i . We prove that a function admits, in appropriate conditions, a unique quadratic mapping satisfying the corresponding functional equation. Finally, we discuss the Ulam stability of that functional equation by using the directed method and fixed-point method, respectively.


2018 ◽  
Author(s):  
Παύλος Πάλλας

Η διατριβή παρουσιάζει νέες συναρτησιακές εξισώσεις πολυωνυμικού τύπου και μελετά αυτές ως προς την ευστάθειά τους κατά Hyers-Ulam-Rassias και Ulam-Gavruta-Rassias. Η μελέτη αφορά 2ου(Quadratic), 3ου(Cubic), 4ου(Quartic) βαθμού και μικτού τύπου (συνδυασμός) συναρτησιακές εξισώσεις , εξετάζοντας και περιπτώσεις μη- ευστάθειας δίνοντας κατάλληλα αντιπαραδείγματα. Στην εισαγωγή και στο Κεφάλαιο 1, παρουσιάζεται μια εκτενή αναφορά στην ιστορική εξέλιξη του προβλήματος της ευστάθειας του Ulam, την μεθοδολογική προσέγγιση της επίλυσής του, ενσωματώνοντας τις τελευταίες μεθόδους ευστάθειας, εφαρμογές της ευστάθειας σε προβλήματα και άλλους επιστημονικούς τομείς και δίνεται μια εκτενή βιβλιογραφική ανασκόπηση. Το παρών μέρος της εργασίας είναι υπό δημοσίευση στο περιοδικό Μαθηματική Επιθεώρηση . Στο Κεφάλαιο 2, μελετώνται δευτέρου βαθμού συναρτησιακές εξισώσεις και συγκεκριμένα μια τροποποίηση της κλασικής τετραγωνικής συναρτησιακής εξίσωσης f(x+y)+f(x-y)=2f(x)+2f(y) , γενίκευση μιας δευτεροβάθμιας και δύο νέες εξισώσεις σε χώρους Banach. Η παράγραφος 2.1 έχει δημοσιευτεί από τον συγγραφέα, βλ. P.A.Pallas, ''On the generalized Hyers-Ulam stability of an Euler-Lagrange type quadratic functional equation'', Far East Journal of Mathematical Sciences, Vol.101, Number 10, (2017), 2173-2184. Το Κεφάλαιο 3, ασχολείται με τις τρίτου και τετάρτου βαθμού εξισώσεις ως προς την ευστάθεια Ulam κάνοντας χρήση μεθόδων ευστάθειας σε non-Archimedean χώρους. Απάντηση δίνεται σε ανοικτό πρόβλημα για την ευστάθεια της α -quartic συναρτησιακής εξίσωσης 2[f(αx+y)+f(x+αy)]+α(α-1)^2f(x-y)=2(α^2-1)^2[f(x)+f(y)]+α(α+1)^2f(x+y), όπου ζητείται η μελέτη της γενικευμένης ευστάθειας Hyers-Ulam-Rassias, και η εύρεση των συνθηκών ευστάθειας. Παρουσιάζεται η ευστάθειά της σε non-Archimedean χώρους με χρήση της ευθείας και της σταθερού σημείου μεθόδου.(Direct και Fixed point method).Στο Κεφάλαιο 4 παρουσιάζεται η ευστάθεια Hyers-Ulam-Rassias και Ulam-Gavruta-Rassias μικτών συναρτησιακών εξισώσεων. Στις μικτού τύπου πολυωνυμικές συναρτησιακές εξισώσεις η επίλυση καθώς και η ευστάθεια μελετάται συνήθως διαχωρίζοντας τις περιπτώσεις άρτιας και περιττής συνάρτησης. Η πορεία της εύρεσης των συνθηκών ευστάθειας περιλαμβάνει επίσης θεωρήματα που εξετάζουν την ευστάθεια ξεχωριστά για κάθε μία προσθετική, τετραγωνική κλπ. συναρτησιακή εξίσωση που προσεγγίζει την αρχική. Στη συνέχεια, ένα συνδυαστικό θεώρημα ενσωματώνει τα επιμέρους συμπεράσματα. Τα πορίσματα που αφορούν την ευστάθεια Rassias ακολουθούν την ίδια διάταξη. Παρουσιάζονται μικτές εξισώσεις σε χώρους Banach, quasi -β -normed και fuzzy Banach, ενώ δίνονται παραδείγματα μη ευστάθειας. Ειδικότερα, στην ενότητα 4.1 επιλύεται και εξετάζεται η ευστάθεια Hyers-Ulam-Rassias μιας νέας, μικτού τύπου, προσθετικής- τετραγωνικής, συναρτησιακής εξίσωσηςf(x+y+z)+f(x-y+z)+f(x+y-z)+f(x-y-z)=4f(x)+2[f(y)+f(-y)]+2[f(z)+f(-z)], χρησιμοποιώντας την ευθεία μέθοδο Hyers και την σταθερού σημείου, σε χώρους Banach. Η μη ευστάθεια εξετάζεται με παράθεση παραδειγμάτων για τις περιπτώσεις μη ευστάθειας τόσο στα Θεωρήματα της ευθείας μεθόδου όσο και στα Θεωρήματα της μεθόδου σταθερού σημείου. Στην ενότητα 4.2 μελετάται η ευστάθεια μιας νέας μικτής συναρτησιακής εξίσωσης σε σταθμητούς quasi-β-normed χώρους, χώρος που εισήχθη από τους J.M.Rassias και Kim σχετικά πρόσφατα. Στην ενότητα 4.3 παρουσιάζεται το πρόβλημα της ευστάθειας σε ασαφείς τοπολογικές δομές (fuzzy normed spaces).


Author(s):  
SHAYMAA ALSHYBANI

  ABSTRACT. In this paper, using the direct and fixed point methods, we have established the generalized Hyers-Ulam stability of the following additive-quadratic functional equation in non-Archimedean and intuitionistic random normed spaces.   AMS 2010 Subject Classification: 39B82, 39B52, 46S40. Keywords. generalized Hyers-Ulam stability; additive mapping; quadratic mapping; non-Archimedean random normed spaces; intuitionistic random normed spaces; fixed point.


Sign in / Sign up

Export Citation Format

Share Document