Spatial Frequency Selectivity of Spiral Aftereffect

1982 ◽  
Vol 55 (3_suppl) ◽  
pp. 1129-1130 ◽  
Author(s):  
Willard L. Brigner

The spiral aftereffect was noted for test spirals differing from the inducing spiral by approximately ±1 octave. These findings are consistent with previous investigations which indicate spatial frequency mechanisms in the human visual system are responsive to a spatial frequency range of approximately ±1 octave.

2010 ◽  
Vol 50 (17) ◽  
pp. 1712-1719 ◽  
Author(s):  
Stanley W. Govenlock ◽  
Christopher P. Taylor ◽  
Allison B. Sekuler ◽  
Patrick J. Bennett

1985 ◽  
Vol 25 (9) ◽  
pp. 1233-1240 ◽  
Author(s):  
Eckart Perizonius ◽  
Wolfgang Schill ◽  
Hans Geiger ◽  
Rainer Röhler

Author(s):  
Xiangyang Xu ◽  
Qiao Chen ◽  
Ruixin Xu

Similar to auditory perception of sound system, color perception of the human visual system also presents a multi-frequency channel property. In order to study the multi-frequency channel mechanism of how the human visual system processes color information, the paper proposed a psychophysical experiment to measure the contrast sensitivities based on 17 color samples of 16 spatial frequencies on CIELAB opponent color space. Correlation analysis was carried out on the psychophysical experiment data, and the results show obvious linear correlations of observations for different spatial frequencies of different observers, which indicates that a linear model can be used to model how human visual system processes spatial frequency information. The results of solving the model based on the experiment data of color samples show that 9 spatial frequency tuning curves can exist in human visual system with each lightness, R–G and Y–B color channel and each channel can be represented by 3 tuning curves, which reflect the “center-around” form of the human visual receptive field. It is concluded that there are 9 spatial frequency channels in human vision system. The low frequency tuning curve of a narrow-frequency bandwidth shows the characteristics of lower level receptive field for human vision system, the medium frequency tuning curve shows a low pass property of the change of medium frequent colors and the high frequency tuning curve of a width-frequency bandwidth, which has a feedback effect on the low and medium frequency channels and shows the characteristics of higher level receptive field for human vision system, which represents the discrimination of details.


Perception ◽  
1986 ◽  
Vol 15 (5) ◽  
pp. 553-562 ◽  
Author(s):  
Marisa Carrasco ◽  
Jesus G Figueroa ◽  
J Douglas Willen

Previous investigations have shown that the response of spatial-frequency-specific channels in the human visual system is differentially affected by adaptation to gratings of distinct spatial frequencies and/or orientations. A study is reported of the effects of adaptation to vertical or horizontal gratings of a high or a low spatial frequency on the extent of the Brentano form of the Müller-Lyer illusion in human observers. It is shown that the illusion decreases after adaptation to vertical gratings of low spatial frequency, but seems unaffected otherwise. These results are consistent with the notion of visual channels that are spatial-frequency and orientation specific, and support the argument that the Müller-Lyer illusion may be due primarily to lower-spatial-frequency components in the Fourier spectra of the image.


2020 ◽  
Vol 20 (11) ◽  
pp. 425
Author(s):  
Anqi Zhang ◽  
Wilson S. Geisler

Perception ◽  
1982 ◽  
Vol 11 (3) ◽  
pp. 337-346 ◽  
Author(s):  
Leon N Piotrowski ◽  
Fergus W Campbell

To establish how little information the human visual system requires for recognition, common objects were digitally manipulated in the Fourier domain. The results demonstrate that it is not only possible, but also quite efficient, for a (biological) visual system to exist with very few phase relationships among the component spatial frequencies of the (retinal) image. A visual example is then presented which illustrates how certain phase relationships can hinder, or completely eliminate, the recognition of visual scenes.


Perception ◽  
1973 ◽  
Vol 2 (1) ◽  
pp. 31-40 ◽  
Author(s):  
V Virsu ◽  
S Haapasalo

Five forms of relationships and four types of channels are possible between two systems of sensory channels. The relationships between channels for colour and spatial frequency were studied in three adaptation experiments. In the first, a new colour-specific spatial aftereffect was found, which indicates the existence of channels that are specific both to colour and to spatial frequency. The second showed that the spatial-frequency aftereffect of Blakemore and Sutton is not colour specific, which indicates that there are channels for spatial frequency that are not colour specific. The third demonstrated that coloured afterimages are not spatial-frequency specific immediately after adaptation, although they become so later. This indicates that there are channels for colour that are not spatial-frequency specific. The existence of these three types of channels implies that the channel systems for colour and spatial frequency overlap partially and mutually in the human visual system. This kind of organisation of channel systems, if it exists, may form the psychophysical structure that is required for the capacity of simultaneous integration and differentiation in the perception of colour and size of visual objects.


Sign in / Sign up

Export Citation Format

Share Document