lyer illusion
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 14)

H-INDEX

33
(FIVE YEARS 1)

2021 ◽  
Vol 15 ◽  
Author(s):  
Irina Shoshina ◽  
Inna Zelenskaya ◽  
Valeriia Karpinskaia ◽  
Yuri Shilov ◽  
Elena Tomilovskaya

The aim of this work was to study the sensitivity of the visual system in 5-day “dry” immersion with a course of high-frequency electromyostimulation (HFEMS) and without it. “Dry” immersion (DI) is one of the most effective models of microgravity. DI reproduces three basic effects of weightlessness: physical inactivity, support withdrawal and elimination of the vertical vascular gradient. The “dry” immersion included in the use of special waterproof and highly elastic fabric on of immersion in a liquid similar in density to the tissues of the human body. The sensitivity of the visual system was assessed by measuring contrast sensitivity and magnitude of the Müller-Lyer illusion. The visual contrast sensitivity was measured in the spatial frequency range from 0.4 to 10.0 cycles/degree. The strength of visual illusion was assessed by means of motor response using “tracking.” Measurements were carried out before the start of immersion, on the 1st, 3rd, 5th days of DI, and after its completion. Under conditions of “dry” immersion without HFEMS, upon the transition from gravity to microgravity conditions (BG and DI1) we observed significant differences in contrast sensitivity in the low spatial frequency range, whereas in the experiment with HFEMS—in the medium spatial frequency range. In the experiment without HFEMS, the Müller-Lyer illusion in microgravity conditions was absent, while in the experiment using HFEMS it was significantly above zero at all stages. Thus, we obtained only limited evidence in favor of the hypothesis of a possible compensating effect of HFEMS on changes in visual sensitivity upon the transition from gravity to microgravity conditions and vice versa. The study is a pilot and requires further research on the effect of HFEMS on visual sensitivity.


2021 ◽  
Author(s):  
Man-Ling Ho ◽  
D. Samuel Schwarzkopf

Brain activity in retinotopic cortex reflects illusory changes in stimulus position. Is this neural signature a general code for apparent position? Here we show that responses in primary visual cortex (V1) are consistent with perception of the Muller-Lyer illusion; however, we found no such signature for another striking illusion, the curveball effect. This demonstrates that V1 does not encode apparent position per se.


2021 ◽  
pp. 095679762199155
Author(s):  
Amanda R. Brown ◽  
Wim Pouw ◽  
Diane Brentari ◽  
Susan Goldin-Meadow

When we use our hands to estimate the length of a stick in the Müller-Lyer illusion, we are highly susceptible to the illusion. But when we prepare to act on sticks under the same conditions, we are significantly less susceptible. Here, we asked whether people are susceptible to illusion when they use their hands not to act on objects but to describe them in spontaneous co-speech gestures or conventional sign languages of the deaf. Thirty-two English speakers and 13 American Sign Language signers used their hands to act on, estimate the length of, and describe sticks eliciting the Müller-Lyer illusion. For both gesture and sign, the magnitude of illusion in the description task was smaller than the magnitude of illusion in the estimation task and not different from the magnitude of illusion in the action task. The mechanisms responsible for producing gesture in speech and sign thus appear to operate not on percepts involved in estimation but on percepts derived from the way we act on objects.


i-Perception ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 204166952110156
Author(s):  
Stuart Anstis ◽  
Patrick Cavanagh

A moving frame can dramatically displace the perceived location of stimuli flashed before and after the motion. Here, we use a moving frame to rearrange flashed elements into the form of classic illusions. Without the moving frame, the initial arrangement of the flashed elements has no illusory effect. The question is whether the frame-induced displacement of position precedes or follows the processes underlying the illusions. This illusory offset of flashed chevrons does generate a Müller-Lyer illusion and the illusory offset of two line segments does create a Poggendorff illusion. We conclude that the site where the frame-induced position shift emerges must precede the site at which the Müller-Lyer and Poggendorf illusions arise.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carl Bunce ◽  
Katie L. H. Gray ◽  
Richard Cook

AbstractThere is growing interest in how human observers perceive social scenes containing multiple people. Interpersonal distance is a critical feature when appraising these scenes; proxemic cues are used by observers to infer whether two people are interacting, the nature of their relationship, and the valence of their current interaction. Presently, however, remarkably little is known about how interpersonal distance is encoded within the human visual system. Here we show that the perception of interpersonal distance is distorted by the Müller-Lyer illusion. Participants perceived the distance between two target points to be compressed or expanded depending on whether face pairs were positioned inside or outside the to-be-judged interval. This illusory bias was found to be unaffected by manipulations of face direction. These findings aid our understanding of how human observers perceive interpersonal distance and may inform theoretical accounts of the Müller-Lyer illusion.


Sign in / Sign up

Export Citation Format

Share Document