scholarly journals Optimum Design of Fibrous Laminated Plates with Sectionally-Varied Fiber Orientation Angles.

1993 ◽  
Vol 42 (474) ◽  
pp. 233-238
Author(s):  
Mitsunori MIKI ◽  
Yoshihiko SUGIYAMA ◽  
Ichiro OHBA
2012 ◽  
Vol 629 ◽  
pp. 95-99 ◽  
Author(s):  
N. Hamani ◽  
D. Ouinas ◽  
N. Taghezout ◽  
M. Sahnoun ◽  
J. Viña

In this study, a buckling analysis is performed on rectangular composite plates with single and double circular notch using the finite element method. Laminated plates of carbon/bismaleimde (IM7/5250-4) are ordered symmetrically as follows [(θ/-θ)2]S. The buckling strength of symmetric laminated plates subjected to uniaxial compression is highlighted as a function of the fibers orientations. The results show that whatever the notch radius, the buckling load is almost stable. Increasing the degree of anisotropy significantly improves critical buckling load.


2014 ◽  
Vol 670-671 ◽  
pp. 158-163 ◽  
Author(s):  
Hui Fen Peng ◽  
Cheng Wang ◽  
Peng Wang

To describe vibration characteristic of composite laminated plates with various fiber orientations, a composite laminated finite element, which follows classical lamination theory, was constructed. In each ply of rectangular composite laminated plates, the fiber orientation changes with respect to the horizontal coordinate. Natural frequencies and mode shapes of composite laminated plates were studied. The first six natural frequencies and mode shapes of composite laminated plates with various fiber orientations are obtained. The accuracy of this composite laminated element is verified by comparing numerical and theoretical results. The results show that the changes of fiber orientation bring a greater degree of flexibility for structure design of composite laminated plates, which can be used to adjust frequencies and mode shapes of composite laminated plates according to practical engineering need.


1995 ◽  
pp. 2202-2207 ◽  
Author(s):  
Shaher A. Kassaimah ◽  
Abdel-Aziz M. Mohamed ◽  
Faysal A. Kolkailah

AIAA Journal ◽  
1979 ◽  
Vol 17 (9) ◽  
pp. 1017-1019 ◽  
Author(s):  
Yoichi Hirano

2014 ◽  
Vol 709 ◽  
pp. 130-134
Author(s):  
Feng Wang ◽  
Wei Ping Zhao ◽  
Song Xiang

Fiber orientation angles optimization is carried out for maximum fundamental frequency of clamped laminated composite plates using the genetic algorithm. The meshless method is utilized to calculate the fundamental frequency of clamped laminated composite plates. In the present paper, the maximum fundamental frequency is an objective function; design variables are a set of fiber orientation angles in the layers. The examples of square laminated plates are considered. The results for the optimal fiber orientation angles and the maximum fundamental frequencies of the 2-layer plates are presented.


Sign in / Sign up

Export Citation Format

Share Document