Effect of Fiber Orientation on Vibration Characteristic of Composite Laminated Plates

2014 ◽  
Vol 670-671 ◽  
pp. 158-163 ◽  
Author(s):  
Hui Fen Peng ◽  
Cheng Wang ◽  
Peng Wang

To describe vibration characteristic of composite laminated plates with various fiber orientations, a composite laminated finite element, which follows classical lamination theory, was constructed. In each ply of rectangular composite laminated plates, the fiber orientation changes with respect to the horizontal coordinate. Natural frequencies and mode shapes of composite laminated plates were studied. The first six natural frequencies and mode shapes of composite laminated plates with various fiber orientations are obtained. The accuracy of this composite laminated element is verified by comparing numerical and theoretical results. The results show that the changes of fiber orientation bring a greater degree of flexibility for structure design of composite laminated plates, which can be used to adjust frequencies and mode shapes of composite laminated plates according to practical engineering need.

2021 ◽  
pp. 107754632110377
Author(s):  
Fengxia He ◽  
Zhong Luo ◽  
Lei Li ◽  
Xiaoxia Zhang

Similitude laws can be used to extrapolate the vibration characteristic of a small, inexpensive, and easily tested model into structural behavior for the full-size prototype. In this article, a systematic similitude approach is proposed to predict the natural frequency, mode shape, and vibration response of composite laminated plates. The emphasis of this article is to predict the vibration characteristic of composite laminated plates in an effective and convenient way. Sensitivity analysis (SA) is introduced to improve the prediction accuracy of natural frequency. For distortion similarity, the prediction accuracy is improved close to 5%. Modal assurance criterion (MAC) measures the consistency of mode shapes of the full-size prototype and scaled models. The influence of stacking sequence on mode consistency is investigated. Similitude based on virtual mode and statistical energy (SVMSE) is proposed to extrapolate the transient response of the prototype to simulate the shock environment, such as satellite–rocket separation, etc. In conclusion, the prediction accuracy of natural frequency, mode consistency, and response coincidence are considered comprehensively to extrapolate the vibration characteristic of the full-size laminated plates.


2012 ◽  
Vol 487 ◽  
pp. 894-897
Author(s):  
Wei Qiang Zhao ◽  
Yong Xian Liu ◽  
Mo Wu Lu ◽  
Qing Jun Guo

This paper introduces the FEA method for a certain type of aero-engine turbine blade and makes a vibration characteristics analysis to this aero-engine turbine blade based on this method. The vibration characteristic of this aero-engine turbine blade is studied and the natural modal of the turbine blade is calculated based on UG software. The first six natural frequencies and mode shapes are given. According to the analysis results the dynamic characteristics of the blade are discussed. The analysis method and results in this paper can be used for further study on optimal design and vibration safety verification for the blade.


Author(s):  
Alborz Mirzabeigy ◽  
Reza Madoliat

In the present paper, the problem of transverse free vibration of two parallel beams partially connected to each other by a Winkler-type elastic layer is investigated. Euler–Bernoulli beam hypothesis has been applied, and translational and rotational elastic springs in each end considered as support. The motion of the system is described by coupled, piece-wise differential equations. The differential transform method (DTM) is employed to derive natural frequencies and mode shapes. DTM is a semi-analytical approach based on Taylor expansion series which does not require any admissible functions and yields rapid convergence and computational stability. After validation of the DTM results with results reported by well-known references and finite elements solution, the influences of the inner layer connection length, boundary conditions, the coefficient of elastic inner layer and ratio of beam’s flexural rigidity on natural frequencies as well as influences of the inner layer connection length on mode shapes are discussed. This problem is treated for the first time, and results are completely new which candidate them to being considered for practical engineering applications.


Author(s):  
Adil Yucel ◽  
Alaeddin Arpaci

In this study, dynamic behaviour of trapezoidal and sinusoidal corrugated plates which are widely used in the fields of space, aviation, automotive, construction and shipbuilding have been analyzed. 330 different surface models varying according to corrugation height and number have been created for these plates which have various manufacturing parameters. At this stage, the number of analyses is 660. These models have been analyzed for different boundary conditions and modal analyses to obtain natural frequencies and mode shapes have been conducted using finite element method. In addition, changes in the trapezoidal cross-section profile have also been investigated by analyzing 38 different plates with varying cross-section profiles. Examining these results, the effects of corrugation height and number on natural frequencies and mode shapes have been determined. As a result of the study a total of 368 drawings were prepared and 736 analyses were performed. Besides, the theoretical results have been verified using the experimental modal analysis technique for some selected models which are being manufactured in the market.


1996 ◽  
Vol 2 (4) ◽  
pp. 381-414 ◽  
Author(s):  
T.J. Anderson ◽  
A.H. Nayfeh

The natural frequencies and mode shapes of several graphite-epoxy plates were determined using experimental modal analysis and finite-element analysis. The experimental and theoretical results are com pared. The samples tested included four types of layups: ±15°, ±30°, cross-ply, and quasi-isotropic plates. Each plate was tested in three configurations: free-hanging, cantilever, and fixed-fixed for a total of twelve test configurations. The material properties of the plates and the test methods used to obtain them are in cluded. There is a very good agreement between the experimental and theoretical results for the free-hanging and cantilever configurations. The agreement for the fixed-fixed results is poor. This indicates that the clamps for the fixed-fixed configuralion are not ideal and that they introduce some uncertainty in the boundary condi tions. The free-hanging results provide accurate experimental natural frequencies of several composite plates; they can be used to validate future theoretical developments. The fixed-fixed results are used to provide pos sible explanations for the discrepancies between the measured and calculated natural frequencies previously reported in the literature.


2015 ◽  
Vol 667 ◽  
pp. 512-517
Author(s):  
Li Zhi Gu ◽  
Tie Ming Xiang ◽  
Peng Li ◽  
Jian Min Xu

In order to obtain the pinion's natural frequencies and mode shapes of a new kind of spiral bevel gear (SBG) which is logarithmic spiral bevel gear (LSBG) in the unconstrained state for the purpose of dynamic characteristics study, select the low carbon alloy steel 20CrMnTi (China specification) with good mechanical properties, which the carbon content is 0.17%-0.23%, the elastic modulus E=2.06675×1011Pa, the Poisson's ratio is 0.25, and the density is 7.85×103kg/m3, the finite element model of LSBG pinion which consist of 35100 nodes, 19889 Solid187 tetrahedron FEM elements is established by using free meshing method based on LSBG pinion's physical model in this paper. Solve the modal parameters of the first 6 orders, draw the main vibration mode shape according to the first 6 orders natural frequencies respectively. The first 6 orders critical revolution speeds are calculated by the first 6 orders corresponding natural frequencies, and the LSBG pinion allowable work revolution speeds are 117074.16 revolutions per minute. The free modal analysis of the conventional SBG pinion with the same parameters is done for comparison with LSBG pinion. The results show the LSBG pinion's nature frequency and the critical revolution speed are both lower than that of conventional SBG. The conclusions reflect the vibration response characteristics of LSBG pinion, and provide theoretical basis for dynamic response, structure design and optimization of LSBG pinion.


Author(s):  
Sayyed Roohollah Kazemi Bazardehi ◽  
Mohammad Ali Kouchakzadeh

Filtered mode shapes are used to detect the presence, location, size and shape of the delaminations in composite laminated plates with various boundary conditions. This method is the extension of a previous study by the authors on the delamination detection in the beams using irregularities of the mode shapes. The mode shapes are filtered to separate the smooth and irregular parts. Presence and situation of delamination affects these separated parts, and these effects are used to detect the delamination. Here, two new indicators, named ‘slope of smooth part’ and ‘irregularities in the slope of smooth part’, are introduced to increase the clarity of detected damage and reduce the noisy effects. The former one is obtained by differentiating the smooth part of the mode shape and the latter by applying the filter on the slope of smooth part for another time. Using this method and the mentioned indicators, delaminations may be detected in the plates using the data of just the damaged structure. This is considered as an important advantage of the method as we do not need the intact structure data. The method is validated utilizing the numerical data for a delaminated plate model. This method lacks the ability to locate the position of delamination through the thickness and the delamination should not be too close to the edges of the plate.


2018 ◽  
Vol 1 (2) ◽  
pp. 35-39
Author(s):  
Kenji Hosokawa

Since composite materials such as laminated composite plates have high specific strength and high structural efficiency, they have been usedin many structural applications. It is therefore very important to make clear the vibration characteristics of the laminated plates for the designand the structural analysis. Especially, the vibration characteristics of the laminated plates with attached mass are essential. However, wecannot find the theoretical or experimental approaches for the free vibration of laminated plates with attached mass. In the present study, theexperimental and numerical approaches are applied to the free vibration of cantilevered symmetrically laminated plates with attached mass.First, by applying the experimental modal analysis technique to the cantilevered symmetrically laminated plates with attached mass, thenatural frequencies and mode shapes of the plates are obtained. Next, the natural frequencies and mode shapes of the cantileveredsymmetrically laminated plates with attached mass are calculated by Finite Element Method (FEM). Finally, from the experimental andnumerical results, the effect of the moment of inertia of the attached mass to the natural frequencies and mode shapes of the cantileveredsymmetrically laminated plates are clarified.


1988 ◽  
Vol 110 (4) ◽  
pp. 473-477 ◽  
Author(s):  
C. Z. Xiao ◽  
D. X. Lin ◽  
F. Ju

This paper is concerned with the finite element technique for predicting the dynamic properties of anisotropic fiber-reinforced composite laminated plates. Considering the effect of transverse shear deformation, a higher order shear deformation theory which satisifes the zero shear stress conditions at the upper and bottom surfaces is assumed. The natural frequencies and mode shapes of a rectangular plate with all free edges are obtained by finite element method and the modal damping values by finite damped element technique. An equivalent stiffness method is introduced to reduce computation time. Four different theoretical predictions of natural frequencies and damped values of a laminated plate are compared with experimental results. Discussions on the effect of transverse shear deformation to the dynamic properties of composite plates are given.


Sign in / Sign up

Export Citation Format

Share Document