Fiber Orientation Angles Optimization for Maximum Fundamental Frequency of Laminated Composite Plates by the Genetic Algorithm and Meshless Method

2014 ◽  
Vol 709 ◽  
pp. 130-134
Author(s):  
Feng Wang ◽  
Wei Ping Zhao ◽  
Song Xiang

Fiber orientation angles optimization is carried out for maximum fundamental frequency of clamped laminated composite plates using the genetic algorithm. The meshless method is utilized to calculate the fundamental frequency of clamped laminated composite plates. In the present paper, the maximum fundamental frequency is an objective function; design variables are a set of fiber orientation angles in the layers. The examples of square laminated plates are considered. The results for the optimal fiber orientation angles and the maximum fundamental frequencies of the 2-layer plates are presented.

Author(s):  
Pham Dinh Nguyen ◽  
Quang-Viet Vu ◽  
George Papazafeiropoulos ◽  
Hoang Thi Thiem ◽  
Pham Minh Vuong ◽  
...  

This paper proposes an optimization procedure for maximization of the biaxial buckling load of laminated composite plates using the gradient-based interior-point optimization algorithm. The fiber orientation angle and the thickness of each lamina are considered as continuous design variables of the problem. The effect of the number of layers, fiber orientation angles, thickness and length to thickness ratios on the buckling load of the laminated composite plates under biaxial compression is investigated. The effectiveness of the optimization procedure in this study is compared with previous works.


2014 ◽  
Vol 709 ◽  
pp. 135-138
Author(s):  
Ying Tao Chen ◽  
Song Xiang ◽  
Wei Ping Zhao

The genetic algorithm is used to minimize the stress of the laminated composite plates by optimizing the fiber orientation angle. The objective function of optimization problem is the minimum stress in center of laminated composite plates under the external load; optimization variables are fiber orientation angle. The results for the optimal fiber orientation angle and the minimum stress of the 2-layer plates and 3-layer plates are presented.


2014 ◽  
Vol 709 ◽  
pp. 144-147
Author(s):  
Ying Tao Chen ◽  
Song Xiang ◽  
Wei Ping Zhao

Optimization of fiber orientation angle is studied to minimize the deflection of the laminated composite plates by the genetic algorithm. The objective function of optimization problem is the minimum deflection of laminated composite plates under the external load; optimization parameters are fiber orientation angle of laminated composite plates. The results for the optimal fiber orientation angle and the minimum deflection of the 4-layer plates are presented to demonstrate the validity of present method.


2007 ◽  
Vol 348-349 ◽  
pp. 725-728 ◽  
Author(s):  
Omer Soykasap ◽  
Şükrü Karakaya

In this study, the structural optimization of laminated composite plates for maximum buckling load capacity is performed by using genetic algorithm. The composite plate under consideration is a 64-ply laminate made of graphite/epoxy, is simply supported on four sides, and subject to in-plane compressive static loads. The critical buckling loads are determined for several load cases and different plate aspect ratios using 2-ply stacks of 02, ±45, 902. The problem has multiple global solutions, the results of which are compared with previously published results.


2014 ◽  
Vol 709 ◽  
pp. 153-156
Author(s):  
Guo Qing Zhou ◽  
Wei Ping Zhao ◽  
Song Xiang

Natural frequencies of simply supported laminated composite plates are calculated by the meshless global collocation method based on Gaussian radial basis function. The accuracy of meshless global radial basis function collocation method depends on the choice of shape parameter of radial basis function. In present paper, the shape parameter of Gaussian radial basis function is optimized using the genetic algorithm. Gaussian radial basis function with optimal shape parameter is utilized to analyze the natural frequencies of simply supported laminated composite plates. The present results are compared with the results of available literatures which verify the accuracy of present method.


Sign in / Sign up

Export Citation Format

Share Document