scholarly journals A fundamental study on the production of rare earth metals (Sm, Eu, Tm and Yb) by direct reduction process.

1989 ◽  
Vol 105 (2) ◽  
pp. 175-180
Author(s):  
Kazuyoshi SHIMAKAGE ◽  
Kazuhiko ENDO ◽  
Tadao SATO ◽  
Hiroshi KATAYAMA
2016 ◽  
Vol 55 (3) ◽  
pp. 345-355 ◽  
Author(s):  
T. Jiang ◽  
L. Yang ◽  
G. Li ◽  
J. Luo ◽  
J. Zeng ◽  
...  

2021 ◽  
Vol 118 (2) ◽  
pp. 209
Author(s):  
Nan Li ◽  
Feng Wang ◽  
Wei Zhang

In view of the carbon-containing composite pellets direct reduction process in rotary hearth furnace, a mathematical model coupling heterogeneous chemical reaction kinetics, heat and mass transfer of this process was established. The effects of furnace temperature (from 1273.15 K to 1673.15 K) and pellet radius (from 6 mm to 16 mm) on the direct reduction of carbon-containing composite pellets were studied by adopting computational fluid dynamics software. The pellet temperature and composition changes under different operating conditions were analyzed. CO and CO2 fluxes, heat fluxes on the pellet surface were especially studied. Total heat absorption by the pellet, CO and CO2 overflow from the pellet surface together with pellet degree of metallization (DOM) and zinc removal rate (ZRR) were calculated. Results show that with the increasing of furnace temperature or the decreasing of the pellet radius, the temperature difference between pellet surface and its center and the final DOM, ZRR increased. The larger the pellet radius, the smaller the heat absorption, also the smaller CO and CO2 overflow. But heat absorption and CO overflow per unit volume are higher. There is an optimal pellet radius with high CO utilization efficiency. Pellet porosity decreases at first and then increases with reducing time. It is also found that effective thermal conductivity is a major factor limiting the pellets temperature increasing. The reduction sequence of the pellets is Fe2O3→Fe3O4→FeO→Fe.


2015 ◽  
Vol 22 (8) ◽  
pp. 2914-2921 ◽  
Author(s):  
De-qing Zhu ◽  
Yan-hong Luo ◽  
Jian Pan ◽  
Xian-lin Zhou

2008 ◽  
Vol 35 (1) ◽  
pp. 3-13 ◽  
Author(s):  
J. Y. Shi ◽  
E. Donskoi ◽  
D. L. S. McElwain ◽  
L. J. Wibberley

2011 ◽  
Vol 233-235 ◽  
pp. 753-758
Author(s):  
Zhao Cai Wang ◽  
Man Sheng Chu ◽  
Zhuang Nian Li ◽  
Jue Tang ◽  
Qing Jie Zhao ◽  
...  

The paigeite resources are abundant in China, but most of them are difficult to be utilized efficiently because of the current technical problems on industrial practice. It is necessary to perfected and innovated for comprehensive utilization of paigeite. The new process of gas-based shaft furnace direct reduction-electric furnace smelting separation provides a new way to efficient and clean comprehensive utilization of paigeite resources. In this paper, the pellets are prepared from boron-bearing iron concentrate. The mechanisms of roasting, the rules of reduction, and the properties of reduction swelling are also investigated. And then the pellets after reduction are smelted and separated in electric furnace to study the properties of products and analyze the feasibility and superiority of new technique. The results showed that boron-bearing iron concentrate is a kind of good raw material for pelletizing process. The properties of boron-bearing pellets after roasting for 20 min at 1200°C could meet to the requirements of gas-based shaft furnace direct reduction process, which exhibited fast reaction rate, good reduction swelling properties and high compressive strength both before and after reduction. With the new process, the efficient separation of boron and iron can be realized. The high boron grade and high activity of boron-rich slag obtained from new process can be used directly in boric acid manufacture. The new process shows excellent tech-economy feasibility to achieve efficiency and clean comprehensive utilization of paigeite resources.


1987 ◽  
Vol 19 (1-4) ◽  
pp. 115-126
Author(s):  
Nobuyuki Imanishi ◽  
Ryo Watanabe ◽  
Mamoru Onoda ◽  
Masao Shirieda

Sign in / Sign up

Export Citation Format

Share Document