heat absorption
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 115)

H-INDEX

19
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Hashim Hashim ◽  
Sohail Rehman

Abstract Nanomaterials are unique work fluids with preeminent thermal performance for improving heat dissipation. We present theoretical and mathematical insights into nanofluid heat transfer and flow dynamics in nonuniform channels utilizing a non-Newtonian fluid. Therefore, the impacts of heat absorption/generation and Joule heating in a magneto hydrodynamic flow of a Carreau nanofluid into a convergent channel with viscous dissipation are addressed in this mathematical approach. Brownian and thermophoresis diffusion are considered to investigate the behavior of temperature and concentration. The magnetic effects on the flow performance are measured. The leading nonlinear equations are solved numerically using the BVP4c solver and RK-4 (Runge–Kutta) along with the shooting algorithm using the computer software MATLAB. The obtained dual solutions are presented graphically. The consequences of the variable magnetic field, heat absorption/generation and numerous physical parameters on the temperature and concentration field are surveyed. The outcomes show that increasing the rates of the heat absorption/generation parameter and Eckert number enhances the thickness of the thermal profile of the convergent channels, while increasing the value of the Prandtl number expands the thickness of the momentum boundary layer of the convergent channels. The key findings related to the study models are presented and discussed. An assessment of solutions achieved in this article is made with existing data in the literature.


2021 ◽  
Vol 43 (12) ◽  
pp. 709-718
Author(s):  
Soyoung Baek ◽  
Yasaman Ghaffari ◽  
Jiyeol Bae ◽  
Kwang Soo Kim

Objectives : Recently, energy-related research has shifted from developing alternative energy to the efficient management technology of the produced energy. As an alternative, research on phase change materials (PCMs) capable of absorbing and releasing heat as an energy medium has been conducted. This study developed a more efficient heat storage medium using activated carbon as a medium for the phase change material. At the same time, we developed a method for efficiently impregnating the phase change material into the activated carbon pores.Methods : The activated carbon used in this experiment was charcoal powder activated carbon (250-350 mesh) and granular activated carbon. The inorganic phase change materials used in the experiment was manganese nitrate hexahydrate. The method for impregnating the phase change material was pressurization method and dilution method. The heat absorption / emission capacity of the developed material was examined within the range of 10℃ to 50℃.Results and Discussion : The Scanning electron microscope (SEM) and Transmission electron microscopy energy-dispersive X-ray spectroscopy (TEM-EDX) analysis showed that the phase change material was filled in the pore of activated carbon. When the phase change material is filled by the pressurized method, the material properties of manganese nitrate hexahydrate are reflected, resulting in absorption and release of heat at each phase change temperature. As a result of experiments for the selection of the optimum solvent in the phase change material filling study using the dilution method, when ethanol was used as the solvent, the heat absorption was clearly observed even after the phase change material was loaded. As a result of selecting the optimal dilution ratio, the ratio of ethanol was determined to be 1:1 as the dilution ratio with the lowest amount of floating activated carbon. The optimal solvent removal method experimental results show that the heat absorption/release section occurred when the ethanol was removed by evaporation at 85℃ temperature.Conclusions : 1) Both the pressurization method and the dilution method are filling methods in which inorganic phase change materials can be immobilized inside activated carbon, and heat absorption and release characteristics are maintained even after loading. 2) The heat absorption release was maintained for ethanol and the optimal dilution ratio was 1:1. 3) In case of the dilute solvent removal method, the heat absorption/release capacity was maintained when the solvent was removed using only the vaporization method.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 246
Author(s):  
Kang-Min Kim ◽  
Gyu-Bo Kim ◽  
Byoung-Hwa Lee ◽  
Yoon-Ho Bae ◽  
Chung-Hwan Jeon

The need to reduce global carbon dioxide (CO2) emissions is driving the conversion of coal-fired power plants to use methane, which can reduce CO2 emissions by >40%. However, conducting gas firing in coal boilers changes the heat transfer profile; therefore, preliminary evaluations using computational fluid dynamics are required prior to conversion. Here, methane was used as a heat input source in the simulation of an existing coal boiler, and combustion, nitrogen oxides (NOx) emission characteristics, and heat transfer profile changes inside the boiler were analyzed. Furthermore, changes in the burner zone stoichiometric ratio (BZSR) were simulated to restore the decreased heat absorption of the furnace waterwall, revealing that air distribution could change the heat absorption of the waterwall and tube bundles. However, this change was smaller than that caused by conversion from coal to methane. Therefore, to implement gas firing in coal boilers, alternatives such as output derating, using an attemperator, or modifying heat transfer surfaces are necessary. Despite these limitations, a 70% reduction in NOx emissions was achieved at a BZSR of 0.76, compared with coal. As the BZSR contributes significantly to NOx emissions, conducting gas firing in existing coal boilers could significantly reduce NOx and CO2 emissions.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1554
Author(s):  
Muhammad Shoaib ◽  
Muhammad Asif Zahoor Raja ◽  
Muhammad Touseef Sabir ◽  
Kottakkaran Sooppy Nisar ◽  
Wasim Jamshed ◽  
...  

The objective of this study is to explore the flow features and heat transfer properties of an MHD hybrid nanofluid between two parallel plates under the effects of joule heating and heat absorption/generation (MHD-HFRHT) by utilizing the computational strength of Levenberg–Marquardt Supervised Neural Networks (LM-SNNs). Similarity equations are utilized to reduce the governing PDEs into non-linear ODEs. A reference solution in the form of data sets for MHD-HFRHT flow is obtained by creating different scenarios by varying involved governing parameters such as the Hartman number, rotation parameter, Reynolds number, velocity slip parameter, thermal slip parameter and Prandtl number. These reference data sets for all scenarios are placed for training, validation and testing through LM-SNNs and the obtained results are then compared with reference output to validate the accuracy of the proposed solution methodology. AI-based computational strength with the applicability of LM-SNNs provides an accurate and reliable source for the analysis of the presented fluid-flow system, which has been tested and incorporated for the first time. The stability, performance and convergence of the proposed solution methodology are validated through the numerical and graphical results presented, based on mean square error, error histogram, regression plots and an error-correlation measurement. MSE values of up to the accuracy level of 1 × 10−11 established the worth and reliability of the computational technique. Due to an increase in the Hartmann number, a resistance was observed, resulting in a reduction in the velocity profile. This occurs as the Hartmann number measures the relative implication of drag force that derives from magnetic induction of the velocity of the fluid flow system. However, the Reynolds number accelerates in the velocity profile due to the dominating impact of inertial force.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8352
Author(s):  
Hyunbin Jo ◽  
Jongkeun Park ◽  
Woosuk Kang ◽  
Junseok Hong ◽  
Sungmin Yoon ◽  
...  

Tangential-firing boilers develop large swirling fireballs by using pulverized coal and air from the corners of the burner zone. During operation, however, the boiler may experience an uneven air supply between corners; this deforms the fireball, raising various issues concerning performance and structural safety. This study investigated the characteristic boiler performance and the role of burner tilting in a 500 MWe boiler with secondary air (SA) in two corners that are up to 1.9 times larger than those in the other corners. Computational fluid dynamics simulations with advanced coal combustion sub-models were employed with the following two sets of cases: (i) six cases of actual operation to validate the modeling and (ii) sixteen cases for the parametric study of SA flow ratio and burner tilt between −15° and +26°. The results showed that the uneven SA supply deteriorated the boiler performance in various aspects and the burner tilt can be used to alleviate its impact. With a larger SA supply from the left wind box, the mass flow, heat absorption, and O2 concentration were larger in the right half of the heat exchanger sections owing to the rotating flow. The corresponding imbalance in the reaction stoichiometry increased the peak temperature entering the tube bundles by up to 60 °C and NO emissions by 6.7% as compared with normal operations. The wall heat absorption was up to 19% larger on the right and front walls. The high burner tilt of +26° helped alleviate the impact of uneven SA supply on the heat distribution and uniformity of the flow pattern and temperature, whereas a +15° burner tilt was the least favorable.


2021 ◽  
pp. 108-131
Author(s):  
Jorge Daniel Taillant

This chapter discusses the critical role glaciers play in reflecting solar heat back into space and how the melting of glaciers reveals darker land and water surfaces that leads to surface heat absorption and global warming. The chapter gets into the dynamics of albedo and surface heat, explaining the causes of color change on glaciers, such as soot and volcanic ash deposits. It reviews the significant albedo contributions of glacier and sea-ice covered surfaces of the Arctic, Greenland, and Antarctica and discusses the urban heat island effect in cities as an analogy to glacier surface warming due to darkening. The chapter also examines geological history and anthropogenic causes of glacier surface albedo changes, such as the industrial revolution.


2021 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Paula Andrés-Anaya ◽  
María Sánchez-Aparicio ◽  
Susana del Pozo ◽  
Susana Lagüela

Albedo and Land Surface Temperature (LST) are thermophysical parameters that define the behavior of cities in terms of Urban Heat Islands (UHIs). Both parameters are correlated in such a way that materials with low values of albedo (associated with low reflection rates of solar radiation) result in higher heat absorption, and consequently, in higher LST values. This tendency reinforces the effect of UHI. Thus, the use of materials with high values of albedo in building envelopes can be a solution to reduce heat accumulation within cities and to subsequently improve the temperature reduction at nighttime.


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2925
Author(s):  
Nur Syazana Anuar ◽  
Norfifah Bachok ◽  
Ioan Pop

This research explored the mixed convection flow past a vertical plate immersed in a hybrid carbon nanotube near the stagnation point. The hybrid carbon nanotube was synthesized by the mixture of two nanoparticles, namely multi-wall (MWCNT) and single-wall (SWCNT) carbon nanotubes immersed in water (base fluid). In addition, attractive aspects of suction/injection and heat generation/absorption effects were incorporated. Similarity variables were used to convert the partial differential equations describing the fluid into ordinary (similarity) differential equations before being solved numerically using Matlab software. The simultaneous impact of several parameters on velocity and temperature profiles, skin friction coefficient, and local Nusselt number were represented with graphs. Dual solutions were observed for some pertinent parameters, which led to stability analysis. This analysis interpreted that merely the first numerical solution is stable. In addition, hybrid nanoparticle, injection effect, and heat-generation parameters led to a decreased range of solutions, whilst the suction effect and heat-absorption parameters acted in the opposite manner. Besides, it is noted that the rate of heat transfer for hybrid carbon nanotube was higher when compared with carbon nanotube and ordinary fluid. Additionally, the heat absorption and buoyancy-assisting flow parameters magnified the heat transfer rate.


2021 ◽  
Author(s):  
Anna Kosinska ◽  
Boris V. Balakin ◽  
Pawel Kosinski

Abstract The paper is devoted to the topic of direct absorption solar collectors (DASCs). The main focus is on comparing two kinds of working fluids that can be used in DASCs, namely carbon black nanofluids and biodegradable coffee colloids. At first, the fluids were tested by exposing them to artificial light (indoor experiments) and real solar irradiation (field experiments). The indoor experiments used a system of relatively large geometry, so most of the heat absorption occurred close to the irradiated surface. This resulted in a similar performance by both fluids. The field experiments involved a smaller system, and the light was concentrated by a solar collector. Here the nanofluid outperformed the coffee colloids. Next, the process was analysed using a theoretical analysis that gave good correspondence with the experiments. Finally, we extended the theoretical analysis to a DASC with a flowing fluid. The model was validated against results from the literature, but it also supported our experimental findings.


Sign in / Sign up

Export Citation Format

Share Document