aluminum silicon alloy
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 50)

H-INDEX

15
(FIVE YEARS 4)

2021 ◽  
Vol 904 ◽  
pp. 59-64
Author(s):  
Viktor Alekseevich Kukartsev ◽  
Aleksandr Ivanovich Cherepanov ◽  
Vadim Sergeevich Tynchenko ◽  
Sergei Georgievich Dokshanin ◽  
Natalia Anatolievna Dalisova

The development of modern high-tech industries of industrial production is impossible without the development of new methods for processing materials with high mechanical characteristics. There is a growing need for an increase in the proportion of parts made of aluminum alloys, a more complex configuration of cast parts, an increase in their reliability and durability in operation, etc. All this poses for metallurgists and foundry workers the task of creating new technologies for producing alloys, improving the technical and economic characteristics of structural materials, improving the quality and reducing the cost of castings.Hypoeutectic silumins have good casting properties, good weldability, machinability and corrosion resistance. However, they are prone to the formation of a coarse needle-like state, which reduces their useful characteristics. To eliminate this phenomenon, it is necessary to apply special technologies and the most common is their modification, which provides grain refinement. This makes it possible to use silumins for the manufacture of castings of complex shapes with increased density and low shrinkage porosity. Such parts can withstand average loads in critical units. Aluminum-silicon alloy AK7 or (ASi7Mg0.3) is a typical silumin, which is in demand in the automotive industry, construction, aircraft construction, machine, automobile and tractor production. It is appreciated for its good casting properties, weldability, machinability and corrosion resistance.


2021 ◽  
Vol 412 ◽  
pp. 185-195
Author(s):  
P.S.P. Monteiro ◽  
Givanildo Alves dos Santos ◽  
Francisco Yastami Nakamoto ◽  
Mauricio S. Nascimento ◽  
Rogerio Teram ◽  
...  

Friction welding (FRW) is an important commercial solid-state welding process in which coalescence is achieved by frictional heat combined with pressure. The objective of this work is to analyze the microstructure and the mechanical behavior of the copper alloy UNS C64200 – bronze-aluminum-silicon, as well as to raise the ideal welding parameters so that there is adequate weldability after process of continuous-drive friction welding. Regarding the analysis of the microstructure, scanning electron microscopy was used to characterize phases. The mechanical properties were evaluated by means of a hardness test of the center of the welded joint, traversing the entire extent of the thermally affected zone. Results show that the UNS C64200 alloy, when subjected to conventional friction welding, behaves satisfactorily in terms of weldability, without the appearance of cracks or defects arising from the temperature characteristic of this process, as well as good hardness with values above the minimum established in norm and higher than the base material.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4100
Author(s):  
Lei Yu ◽  
Sida Jiang ◽  
Fuyang Cao ◽  
Hongxian Shen ◽  
Lunyong Zhang ◽  
...  

Bimetallic gradient alloys have attracted research attention recently due to their potential applications in the aerospace and automobile industries. In this study, Al-20Si/7075 bimetallic gradient alloys were successfully manufactured by co-spray forming and the roll process. We investigated the thermal expansion behavior of the gradient alloy. It was found that the coefficients of thermal expansion increased with silicon content and increased temperature, reaching the highest point at 573 K, after which they decreased on account of the relaxation of residual thermal stress and the silicon desolvation from the supersaturated aluminum phase. The measured thermal expansion coefficient can be roughly predicted through the traditional theoretical models. Our results revealed the thermal expansion behavior of Al-20Si/7075 bimetallic gradient alloys and would improve the development of new type aluminum–silicon alloy for electronic packaging.


2021 ◽  
Author(s):  
mohsen ostadshabani ◽  
Amir Baghani ◽  
Mohammad Reza Rahimipour ◽  
Mansour Razavi ◽  
Mohammad Zakeri ◽  
...  

Abstract Applying aluminum composite in the defense, aerospace and automotive industries depends on how they behave during the elasto-plastic form change. In addition to the factors responsible for changing the form of the alloy, many other factors have an impact on the behavior of the composite form change. In this study, the effect of casting type on the mechanical properties of Al-Si nano composites has been investigated. Due to the proper distribution of reinforcing particles, tensile strength in compo casting sample in semi-solid state is higher than sand casting and squeeze casting. In all samples, the tensile strength of the heat-treated samples has increased by about 30%. Tensile strength in compo casting sample in semi-solid state was obtained with higher nano particle reinforcing particles, which can be explained by the fact that the percentage of elongation in micro samples was lower than that of nano composite samples.


2021 ◽  
Vol 15 (57) ◽  
pp. 373-397
Author(s):  
Mohammad Azadi ◽  
Adel Basiri ◽  
Ali Dadashi ◽  
G. Winter ◽  
B. Seisenbacher ◽  
...  

The objective of the present paper is to investigate the stress-controlled low-cycle fatigue behavior of piston aluminum-silicon (AlSi) alloy reinforced with nano-clay particles and T6 heat-treatment. The piston aluminum-silicon alloy strengthened by 1 wt.% nano-clay particles were prepared by the stir casting method and then subjected to the heat-treatment. The optical microscopy analysis demonstrates that heat-treatment changed the size, morphology, and distribution of silicon phases through the microstructure of the aluminum matrix. In addition to tensile tests, stress-controlled low-cycle fatigue experiments at different loading conditions including the variation of the mean stress, the stress rate, and the stress amplitude were conducted at room temperature. The obtained experimental results showed no clear improvement in either mechanical or fatigue properties of the material. Moreover, the density measurements using the Archimedes method reveal a higher content of the porosity in nano-composite. It was observed that the reinforcement (nano-particles and heat-treatment) can change the cyclic behavior of the AlSi alloy, significantly. The cyclic hardening feature of the AlSi alloy changed to cyclic softening and also the fatigue lifetime and the ratcheting resistance decreased after the nano-particles addition and heat-treatment. Through the microstructural analysis, it was indicated that the neglecting of higher kinematics of age hardening in nano-composite was the major source of mechanical properties reduction. In the end, it was shown that the fatigue lifetime of samples can be described adequately utilizing a modified plastic strain energy technique considering the mean stress effect.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-6
Author(s):  
Akshansh Mishra ◽  
Tarushi Pathak

Machine learning which is a sub-domain of an Artificial Intelligence which is finding various applications in manufacturing and material science sectors. In the present study, Deep Generative Modeling which a type of unsupervised machine learning technique has been adapted for the constructing the artificial microstructure of Aluminium-Silicon alloy. Deep Generative Adversarial Networks has been used for developing the artificial microstructure of the given microstructure image dataset. The results obtained showed that the developed models had learnt to replicate the lining near the certain images of the microstructures.


Sign in / Sign up

Export Citation Format

Share Document