scholarly journals A generalization of Kruskal–Katona’s theorem

2020 ◽  
Vol 28 (2) ◽  
pp. 35-51
Author(s):  
Luca Amata ◽  
Marilena Crupi

AbstractLet K be a field, E the exterior algebra of a finite dimensional K-vector space, and F a finitely generated graded free E-module with homogeneous basis g1, . . ., gr such that deg g1 ≤ deg g2 ≤ · · · ≤ deg gr. We characterize the Hilbert functions of graded E–modules of the type F/M, with M graded submodule of F. The existence of a unique lexicographic submodule of F with the same Hilbert function as M plays a crucial role.

2009 ◽  
Vol 12 (17) ◽  
pp. 5-11
Author(s):  
Bien Hoang Mai ◽  
Hai Xuan Bui

Let D be a division ring with the center F and suppose that D* is the multiplicative group of D. D is called centrally finite if D is a finite dimensional vector space over F and D is locally centrally finite if every finite subset of D generates over F a division subring which is a finite dimensional vector space over F. We say that D is a linear division ring if every finite subset of D generates over Fa centrally finite division subring. It is obvious that every locally centrally finite division ring is linear. In this report we show that the inverse is not true by giving an example of a linear division ring which is not locally centrally finite. Further, we give some properties of subgroups in linear division rings. In particular, we show that every finitely generated subnormal subgroup in a linear ring is central. An interesting corollary is obtained as the following: If D is a linear division ring and D* is finitely generated, then D is a finite field.


1991 ◽  
Vol 43 (1) ◽  
pp. 115-122
Author(s):  
Wolfgang Mutter

In this paper we determine the left ideals in the near-ring Aff(V) of all affine transformations of a vector space V. It is shown that there is a Galois correspondence between the filters of affine subspaces of V and those left ideals of Aff(V) which are not left invariant. In particular, the not left invariant finitely generated left ideals of Aff(V) are precisely the annihilators of the affine subspaces of V. A similar correspondence exists between the filters of linear subspaces of V and the left invariant left ideals of Aff (V). If V is finite-dimensional, then all left ideals of Aff(V) are finitely generated.


2018 ◽  
Vol 25 (01) ◽  
pp. 71-80
Author(s):  
Amir Bagheri ◽  
Rahim Rahmati-Asghar

Let [Formula: see text] be a non-standard polynomial ring over a field k and let M be a finitely generated graded S-module. In this paper, we investigate the behaviour of Hilbert function of M and its relations with lattice point counting. More precisely, by using combinatorial tools, we prove that there exists a polytope such that the image of Hilbert function in some degree is equal to the number of lattice points of this polytope.


2016 ◽  
Vol 101 (2) ◽  
pp. 277-287
Author(s):  
AARON TIKUISIS

It is shown that, for any field $\mathbb{F}\subseteq \mathbb{R}$, any ordered vector space structure of $\mathbb{F}^{n}$ with Riesz interpolation is given by an inductive limit of a sequence with finite stages $(\mathbb{F}^{n},\mathbb{F}_{\geq 0}^{n})$ (where $n$ does not change). This relates to a conjecture of Effros and Shen, since disproven, which is given by the same statement, except with $\mathbb{F}$ replaced by the integers, $\mathbb{Z}$. Indeed, it shows that although Effros and Shen’s conjecture is false, it is true after tensoring with $\mathbb{Q}$.


2011 ◽  
Vol 10 (03) ◽  
pp. 475-489 ◽  
Author(s):  
PINAR AYDOĞDU ◽  
A. ÇIĞDEM ÖZCAN ◽  
PATRICK F. SMITH

Let R be a ring. Modules satisfying ascending or descending chain conditions (respectively, acc and dcc) on non-summand submodules belongs to some particular classes [Formula: see text], such as the class of all R-modules, finitely generated, finite-dimensional and cyclic modules, are considered. It is proved that a module M satisfies acc (respectively, dcc) on non-summands if and only if M is semisimple or Noetherian (respectively, Artinian). Over a right Noetherian ring R, a right R-module M satisfies acc on finitely generated non-summands if and only if M satisfies acc on non-summands; a right R-module M satisfies dcc on finitely generated non-summands if and only if M is locally Artinian. Moreover, if a ring R satisfies dcc on cyclic non-summand right ideals, then R is a semiregular ring such that the Jacobson radical J is left t-nilpotent.


1982 ◽  
Vol 25 (2) ◽  
pp. 133-139 ◽  
Author(s):  
R. J. H. Dawlings

IfMis a mathematical system and EndMis the set of singular endomorphisms ofM, then EndMforms a semigroup under composition of mappings. A number of papers have been written to determine the subsemigroupSMof EndMgenerated by the idempotentsEMof EndMfor different systemsM. The first of these was by J. M. Howie [4]; here the case ofMbeing an unstructured setXwas considered. Howie showed that ifXis finite, then EndX=Sx.


2020 ◽  
pp. 1-20
Author(s):  
Mengyuan Zhang

Abstract We study bundles on projective spaces that have vanishing lower cohomologies using their short minimal free resolutions. We partition the moduli $\mathcal{M}$ according to the Hilbert function H and classify all possible Hilbert functions H of such bundles. For each H, we describe a stratification of $\mathcal{M}_H$ by quotients of rational varieties. We show that the closed strata form a graded lattice given by the Betti numbers.


Author(s):  
Alonso Castillo-Ramirez

For a group [Formula: see text] and a set [Formula: see text], let [Formula: see text] be the monoid of all cellular automata over [Formula: see text], and let [Formula: see text] be its group of units. By establishing a characterization of surjunctive groups in terms of the monoid [Formula: see text], we prove that the rank of [Formula: see text] (i.e. the smallest cardinality of a generating set) is equal to the rank of [Formula: see text] plus the relative rank of [Formula: see text] in [Formula: see text], and that the latter is infinite when [Formula: see text] has an infinite decreasing chain of normal subgroups of finite index, condition which is satisfied, for example, for any infinite residually finite group. Moreover, when [Formula: see text] is a vector space over a field [Formula: see text], we study the monoid [Formula: see text] of all linear cellular automata over [Formula: see text] and its group of units [Formula: see text]. We show that if [Formula: see text] is an indicable group and [Formula: see text] is finite-dimensional, then [Formula: see text] is not finitely generated; however, for any finitely generated indicable group [Formula: see text], the group [Formula: see text] is finitely generated if and only if [Formula: see text] is finite.


Author(s):  
Angelo Bianchi ◽  
Samuel Chamberlin

We investigate the representations of the hyperalgebras associated to the map algebras [Formula: see text], where [Formula: see text] is any finite-dimensional complex simple Lie algebra and [Formula: see text] is any associative commutative unitary algebra with a multiplicatively closed basis. We consider the natural definition of the local and global Weyl modules, and the Weyl functor for these algebras. Under certain conditions, we prove that these modules satisfy certain universal properties, and we also give conditions for the local or global Weyl modules to be finite-dimensional or finitely generated, respectively.


Sign in / Sign up

Export Citation Format

Share Document