scholarly journals Non-autonomous weighted elliptic equations with double exponential growth

2021 ◽  
Vol 29 (3) ◽  
pp. 33-66
Author(s):  
Sami Baraket ◽  
Rached Jaidane

Abstract We consider the existence of solutions of the following weighted problem: { L : = - d i v ( ρ ( x ) | ∇ u | N - 2 ∇ u ) + ξ ( x ) | u | N - 2 u = f ( x , u ) i n B u > 0 i n B u = 0 o n ∂ B , \left\{ {\matrix{{L: = - div\left( {\rho \left( x \right){{\left| {\nabla u} \right|}^{N - 2}}\nabla u} \right) + \xi \left( x \right){{\left| u \right|}^{N - 2}}} \hfill & {u = f\left( {x,u} \right)} \hfill & {in} \hfill & B \hfill \cr {} \hfill & {u > 0} \hfill & {in} \hfill & B \hfill \cr {} \hfill & {u = 0} \hfill & {on} \hfill & {\partial B,} \hfill \cr } } \right. where B is the unit ball of ℝ N , N #62; 2, ρ ( x ) = ( log e | x | ) N - 1 \rho \left( x \right) = {\left( {\log {e \over {\left| x \right|}}} \right)^{N - 1}} the singular logarithm weight with the limiting exponent N − 1 in the Trudinger-Moser embedding, and ξ(x) is a positif continuous potential. The nonlinearities are critical or subcritical growth in view of Trudinger-Moser inequalities of double exponential type. We prove the existence of positive solution by using Mountain Pass theorem. In the critical case, the function of Euler Lagrange does not fulfil the requirements of Palais-Smale conditions at all levels. We dodge this problem by using adapted test functions to identify this level of compactness.

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1792
Author(s):  
Yun-Ho Kim

We are concerned with the following elliptic equations: (−Δ)psv+V(x)|v|p−2v=λa(x)|v|r−2v+g(x,v)inRN, where (−Δ)ps is the fractional p-Laplacian operator with 0<s<1<r<p<+∞, sp<N, the potential function V:RN→(0,∞) is a continuous potential function, and g:RN×R→R satisfies a Carathéodory condition. By employing the mountain pass theorem and a variant of Ekeland’s variational principle as the major tools, we show that the problem above admits at least two distinct non-trivial solutions for the case of a combined effect of concave–convex nonlinearities. Moreover, we present a result on the existence of multiple solutions to the given problem by utilizing the well-known fountain theorem.


2009 ◽  
Vol 51 (3) ◽  
pp. 561-570 ◽  
Author(s):  
NGUYEN THANH CHUNG ◽  
HOANG QUOC TOAN

AbstractWe study the existence of solutions for a class of nonuniformly degenerate elliptic systems inN,N≥ 3, of the formwherehi∈L1loc(N),hi(x) ≧ γ0|x|αwith α ∈ (0, 2) and γ0> 0,i= 1, 2. The proofs rely essentially on a variant of the Mountain pass theorem (D. M. Duc, Nonlinear singular elliptic equations,J. Lond. Math. Soc.40(2) (1989), 420–440) combined with the Caffarelli–Kohn–Nirenberg inequality (First order interpolation inequalities with weights,Composito Math.53(1984), 259–275).


Author(s):  
Yong-Yi Lan ◽  
Chun-Lei Tang

In this paper, we consider the semilinear elliptic equation −Δu = λf(x,u) with the Dirichlet boundary value, and under suitable assumptions on the nonlinear term f with a more general growth condition. Some existence results of solutions are given for all λ > 0 via the variational method and some analysis techniques.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Edcarlos D. Silva ◽  
Marcos L. M. Carvalho ◽  
Claudiney Goulart

<p style='text-indent:20px;'>It is established existence of solutions for subcritical and critical nonlinearities considering a fourth-order elliptic problem defined in the whole space <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula>. The work is devoted to study a class of potentials and nonlinearities which can be periodic or asymptotically periodic. Here we consider a general fourth-order elliptic problem where the principal part is given by <inline-formula><tex-math id="M2">\begin{document}$ \alpha \Delta^2 u + \beta \Delta u + V(x)u $\end{document}</tex-math></inline-formula> where <inline-formula><tex-math id="M3">\begin{document}$ \alpha &gt; 0, \beta \in \mathbb{R} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ V: \mathbb{R}^N \rightarrow \mathbb{R} $\end{document}</tex-math></inline-formula> is a continuous potential. Hence our main contribution is to consider general fourth-order elliptic problems taking into account the cases where <inline-formula><tex-math id="M5">\begin{document}$ \beta $\end{document}</tex-math></inline-formula> is negative, zero or positive. In order to do that we employ some fine estimates proving the compactness for the associated energy functional.</p>


2019 ◽  
Vol 38 (4) ◽  
pp. 31-50
Author(s):  
M. Bagheri ◽  
Ghasem A. Afrouzi

In this paper, we are concerned with the existence of solutions for fourth-order Kirchhoff type elliptic problems with Hardy potential. In fact, employing a consequence of the local minimum theorem due to Bonanno and mountain pass theorem we look into the existence results for the problem under algebraic conditions with the classical Ambrosetti-Rabinowitz (AR) condition on the nonlinear term. Furthermore, by combining two algebraic conditions on the nonlinear term using two consequences of the local minimum theorem due to Bonanno we ensure the existence of two solutions, applying the mountain pass theorem given by Pucci and Serrin we establish the existence of third solution for our problem.


Sign in / Sign up

Export Citation Format

Share Document