scholarly journals Analysis of a Two-level Schwarz Method with Coarse Spaces Based on Local Dirichlet-to-Neumann Maps

2012 ◽  
Vol 12 (4) ◽  
pp. 391-414 ◽  
Author(s):  
Victorita Dolean ◽  
Frédéric Nataf ◽  
Robert Scheichl ◽  
Nicole Spillane

AbstractCoarse grid correction is a key ingredient in order to have scalable domain decomposition methods. For smooth problems, the theory and practice of such two-level methods is well established, but this is not the case for problems with complicated variation and high contrasts in the coefficients. In a previous study, two of the authors introduced a coarse space adapted to highly heterogeneous coefficients using the low frequency modes of the subdomain DtN maps. In this work, we present a rigorous analysis of a two-level overlapping additive Schwarz method with this coarse space, which provides an automatic criterion for the number of modes that need to be added per subdomain to obtain a convergence rate of the order of the constant coefficient case. Our method is suitable for parallel implementation and its efficiency is demonstrated by numerical examples on some challenging problems with high heterogeneities for automatic partitionings.

Author(s):  
Martin Gander ◽  
Laurence Halpern ◽  
Frédéric Magoulès ◽  
François-Xavier Roux

Analysis of Patch Substructuring MethodsPatch substructuring methods are non-overlapping domain decomposition methods like classical substructuring methods, but they use information from geometric patches reaching into neighboring subdomains, condensated on the interfaces, to enhance the performance of the method, while keeping it non-overlapping. These methods are very convenient to use in practice, but their convergence properties have not been studied yet. We analyze geometric patch substructuring methods for the special case of one patch per interface. We show that this method is equivalent to an overlapping Schwarz method using Neumann transmission conditions. This equivalence is obtained by first studying a new, algebraic patch method, which is equivalent to the classical Schwarz method with Dirichlet transmission conditions and an overlap corresponding to the size of the patches. Our results motivate a new method, the Robin patch method, which is a linear combination of the algebraic and the geometric one, and can be interpreted as an optimized Schwarz method with Robin transmission conditions. This new method has a significantly faster convergence rate than both the algebraic and the geometric one. We complement our results by numerical experiments.


2018 ◽  
Vol 28 (07) ◽  
pp. 1267-1289 ◽  
Author(s):  
Juan G. Calvo

A new extension operator for a virtual coarse space is presented which can be used in domain decomposition methods for nodal elliptic problems in two dimensions. In particular, a two-level overlapping Schwarz algorithm is considered and a bound for the condition number of the preconditioned system is obtained. This bound is independent of discontinuities across the interface. The extension operator saves computational time compared to previous studies where discrete harmonic extensions are required and it is suitable for general polygonal meshes and irregular subdomains. Numerical experiments that verify the result are shown, including some with regular and irregular polygonal elements and with subdomains obtained by a mesh partitioner.


Sign in / Sign up

Export Citation Format

Share Document