scholarly journals The Center Of A Generalized Effect Algebra

2014 ◽  
Vol 47 (1) ◽  
pp. 1-21 ◽  
Author(s):  
D. J. Foulis ◽  
S. Pulmannová

AbstractIn this article, we study the center of a generalized effect algebra (GEA), relate it to the exocenter, and in case the GEA is centrally orthocomplete (a COGEA), relate it to the exocentral cover system. Our main results are that the center of a COGEA is a complete boolean algebra and that a COGEA decomposes uniquely as the direct sum of an effect algebra (EA) that contains the center of the COGEA and a complementary direct summand in which no nonzero direct summand is an EA.

1969 ◽  
Vol 16 (3) ◽  
pp. 259-262 ◽  
Author(s):  
H. R. Dowson

Dieudonné (4) has constructed an example of a Banach space X and a complete Boolean algebra B̃ of projections on X such that B̃ has uniform multiplicity two, but for no choice of x1, x2 in X and non-zero E in B̃ is EX the direct sum of the cyclic subspaces clm {Ex1:E∈B̃} and clm {Ex2:E∈B̃}. Tzafriri observed that it could be deduced from Corollary 4 (9, p. 221) that the commutant B̃′ of B̃ is equal to A(B̃), the algebra of operators generated by B̃ in the uniform operator topology. A study of (3) suggested the direct proof of the second property given in this note. From this there follows a simple proof that B̃ has the first property.


2020 ◽  
Vol 70 (3) ◽  
pp. 753-758
Author(s):  
Marcel Polakovič

AbstractLet 𝓖D(𝓗) denote the generalized effect algebra consisting of all positive linear operators defined on a dense linear subspace D of a Hilbert space 𝓗. The D-weak operator topology (introduced by other authors) on 𝓖D(𝓗) is investigated. The corresponding closure of the set of bounded elements of 𝓖D(𝓗) is the whole 𝓖D(𝓗). The closure of the set of all unbounded elements of 𝓖D(𝓗) is also the set 𝓖D(𝓗). If Q is arbitrary unbounded element of 𝓖D(𝓗), it determines an interval in 𝓖D(𝓗), consisting of all operators between 0 and Q (with the usual ordering of operators). If we take the set of all bounded elements of this interval, the closure of this set (in the D-weak operator topology) is just the original interval. Similarly, the corresponding closure of the set of all unbounded elements of the interval will again be the considered interval.


2020 ◽  
Vol 72 (7) ◽  
pp. 960-970
Author(s):  
R. Tribak

UDC 512.5 Let R be a ring and let Ω R be the set of maximal right ideals of R . An R -module M is called an sd-Rickart module if for every nonzero endomorphism f of M , ℑ f is a fully invariant direct summand of M . We obtain a characterization for an arbitrary direct sum of sd-Rickart modules to be sd-Rickart. We also obtain a decomposition of an sd-Rickart R -module M , provided R is a commutative noetherian ring and A s s ( M ) ∩ Ω R is a finite set. In addition, we introduce and study ageneralization of sd-Rickart modules.


2008 ◽  
Vol 73 (4) ◽  
pp. 1433-1457 ◽  
Author(s):  
Miloš S. Kurilić ◽  
Boris Šobot

AbstractThe game is played on a complete Boolean algebra , by two players. White and Black, in κ-many moves (where κ is an infinite cardinal). At the beginning White chooses a non-zero element p ∈ . In the α-th move White chooses pα ∈ (0, p) and Black responds choosing iα ∈{0, 1}. White winsthe play iff . where and .The corresponding game theoretic properties of c.B.a.'s are investigated. So, Black has a winning strategy (w.s.) if κ ≥ π() or if contains a κ-closed dense subset. On the other hand, if White has a w.s., then κ ∈ . The existence of w.s. is characterized in a combinatorial way and in terms of forcing. In particular, if 2<κ = κ ∈ Reg and forcing by preserves the regularity of κ, then White has a w.s. iff the power 2κ is collapsed to κ in some extension. It is shown that, under the GCH, for each set S ⊆ Reg there is a c.B.a. such that White (respectively. Black) has a w.s. for each infinite cardinal κ ∈ S (resp. κ ∉ S). Also it is shown consistent that for each κ ∈ Reg there is a c.B.a. on which the game is undetermined.


1996 ◽  
Vol 182 (3) ◽  
pp. 748-755 ◽  
Author(s):  
Thomas Jech ◽  
Saharon Shelah

1987 ◽  
Vol 52 (2) ◽  
pp. 530-542
Author(s):  
R. Michael Canjar

Throughout this paper, B will always be a Boolean algebra and Γ an ultrafilter on B. We use + and Σ for the Boolean join operation and · and Π for the Boolean meet.κ is always a regular cardinal. C(κ) is the full structure of κ, the structure with universe κ and whose functions and relations consist of all unitary functions and relations on κ. κB is the collection of all B-valued names for elements of κ. We use symbols f, g, h for members of κB. Formally an element f ∈ κB is a mapping κ → B with the properties that Σα∈κf(α) = 1B and that f(α) · f(β) = 0B whenever α ≠ β. We view f(α) as the Boolean-truth value indicating the extent to which the name f is equal to α, and we will hereafter write ∥f = α∥ for f(α). For every α ∈ κ there is a canonical name fα ∈ κB which has the property that ∥fα = α∥ = 1. Hereafter we identify α and fα.If B is a κ+-complete Boolean algebra and Γ is an ultrafilter on B, then we may define the Boolean ultraproduct C(κ)B/Γ in the following manner. If ϕ(x0, x1, …, xn) is a formula of Lκ, the language for C(κ) (which has symbols for all finitary functions and relations on κ), and f0, f1, …, fn−1 are elements of κB then we define the Boolean-truth value of ϕ(f0, f1, …, fn−1) as


2011 ◽  
Vol 68 (3) ◽  
pp. 347-371 ◽  
Author(s):  
David J. Foulis ◽  
Sylvia Pulmannová

Sign in / Sign up

Export Citation Format

Share Document