scholarly journals Thermal history of the Podhale Basin in the internal Western Carpathians from the perspective of apatite fission track analyses

2013 ◽  
Vol 64 (2) ◽  
pp. 141-151 ◽  
Author(s):  
Aneta Agnieszka Anczkiewicz ◽  
Jan Środoń ◽  
Massimiliano Zattin

Abstract The thermal history of the Paleogene Podhale Basin was studied by the apatite fission track (AFT) method. Twenty four Eocene-Oligocene sandstone samples yielded apparent ages from 13.8 ± 1.6 to 6.1 ± 1.4 Ma that are significantly younger than their stratigraphic age and thus point to a post-depositional resetting. The thermal event responsible for the age resetting is interpreted as a combination of heating associated with mid-Miocene volcanism and variable thickness of Oligocene and potentially also Miocene sediments. Extending the mid-Miocene thermal event found in the Inner Carpathians into the Podhale Basin as a likely heat source suggests that the amount of denudation in the Podhale Basin determined only on the basis of heat related to the thickness of sedimentary sequence might have be significantly overestimated. Two samples from the western part of the basin that yielded 31.0 ± 4.3 and 26.9 ± 4.7 Ma are interpreted as having mixed ages resulting from partial resetting in temperature conditions within the AFT partial annealing zone. This observation agrees very well with reported vitrinite reflectance and illite-smectite thermometry, which indicate a systematic drop of the maximum paleotemperatures towards the western side of the basin.

2021 ◽  
Author(s):  
Jennifer Spalding ◽  
Jeremy Powell ◽  
David Schneider ◽  
Karen Fallas

<p>Resolving the thermal history of sedimentary basins through geological time is essential when evaluating the maturity of source rocks within petroleum systems. Traditional methods used to estimate maximum burial temperatures in prospective sedimentary basin such as and vitrinite reflectance (%Ro) are unable to constrain the timing and duration of thermal events. In comparison, low-temperature thermochronology methods, such as apatite fission track thermochronology (AFT), can resolve detailed thermal histories within a temperature range corresponding to oil and gas generation. In the Peel Plateau of the Northwest Territories, Canada, Phanerozoic sedimentary strata exhibit oil-stained outcrops, gas seeps, and bitumen occurrences. Presently, the timing of hydrocarbon maturation events are poorly constrained, as a regional unconformity at the base of Cretaceous foreland basin strata indicates that underlying Devonian source rocks may have undergone a burial and unroofing event prior to the Cretaceous. Published organic thermal maturity values from wells within the study area range from 1.59 and 2.46 %Ro for Devonian strata and 0.54 and 1.83 %Ro within Lower Cretaceous strata. Herein, we have resolved the thermal history of the Peel Plateau through multi-kinetic AFT thermochronology. Three samples from Upper Devonian, Lower Cretaceous and Upper Cretaceous strata have pooled AFT ages of 61.0 ± 5.1 Ma, 59.5 ± 5.2 and 101.6 ± 6.7 Ma, respectively, and corresponding U-Pb ages of 497.4 ± 17.5 Ma (MSWD: 7.4), 353.5 ± 13.5 Ma (MSWD: 3.1) and 261.2 ± 8.5 Ma (MSWD: 5.9). All AFT data fail the χ<sup>2</sup> test, suggesting AFT ages do not comprise a single statistically significant population, whereas U-Pb ages reflect the pre-depositional history of the samples and are likely from various provenances. Apatite chemistry is known to control the temperature and rates at which fission tracks undergo thermal annealing. The r<sub>mro</sub> parameter uses grain specific chemistry to predict apatite’s kinetic behaviour and is used to identify kinetic populations within samples. Grain chemistry was measured via electron microprobe analysis to derive r<sub>mro</sub> values and each sample was separated into two kinetic populations that pass the χ<sup>2</sup> test: a less retentive population with ages ranging from 49.3 ± 9.3 Ma to 36.4 ± 4.7 Ma, and a more retentive population with ages ranging from 157.7 ± 19 Ma to 103.3 ± 11.8 Ma, with r<sub>mr0</sub> benchmarks ranging from 0.79 and 0.82. Thermal history models reveal Devonian strata reached maximum burial temperatures (~165°C-185°C) prior to late Paleozoic to Mesozoic unroofing, and reheated to lower temperatures (~75°C-110°C) in the Late Cretaceous to Paleogene. Both Cretaceous samples record maximum burial temperatures (75°C-95°C) also during the Late Cretaceous to Paleogene. These new data indicate that Devonian source rocks matured prior to deposition of Cretaceous strata and that subsequent burial and heating during the Cretaceous to Paleogene was limited to the low-temperature threshold of the oil window. Integrating multi-kinetic AFT data with traditional methods in petroleum geosciences can help unravel complex thermal histories of sedimentary basins. Applying these methods elsewhere can improve the characterisation of petroleum systems.</p>


2021 ◽  
Author(s):  
Tatyana Bagdasaryan ◽  
Roman Veselovskiy ◽  
Viktor Zaitsev ◽  
Anton Latyshev

<p>The largest continental igneous province, the Siberian Traps, was formed within the Siberian platform at the Paleozoic-Mesozoic boundary, ca. 252 million years ago. Despite the continuous and extensive investigation of the duration and rate of trap magmatism on the Siberian platform, these questions are still debated. Moreover, the post-Paleozoic thermal history of the Siberian platform is almost unknown. This study aims to reconstruct the thermal history of the Siberian platform during the last 250 Myr using the low-temperature thermochronometry. We have studied intrusive complexes from different parts of the Siberian platform, such as the Kotuy dike, the Odikhincha, Magan and Essey ultrabasic alkaline massifs, the Norilsk-1 and Kontayskaya intrusions, and the Padunsky sill. We use apatite fission-track (AFT) thermochronology to assess the time since the rocks were cooled below 110℃. Obtained AFT ages (207-173 Ma) are much younger than available U-Pb and Ar/Ar ages of the traps. This pattern might be interpreted as a long cooling of the studied rocks after their emplacement ca. 250 Ma, but this looks quite unlikely because contradicts to the geological observations. Most likely, the rocks were buried under a thick volcanic-sedimentary cover and then exhumed and cooled below 110℃ ca. 207-173 Ma. Considering the increased geothermal gradient up to 50℃/km at that times, we can estimate the thickness of the removed overlying volcanic-sedimentary cover up to 207-173 Ma as about 2-3 km.</p><p>The research was carried out with the support of RFBR (grants 20-35-90066, 18-35-20058, 18-05-00590 and 18-05-70094) and the Program of development of Lomonosov Moscow State University.</p>


1992 ◽  
Vol 29 (5) ◽  
pp. 909-924 ◽  
Author(s):  
A. M. Grist ◽  
P. H. Reynolds ◽  
M. Zentilli ◽  
C. Beaumont

Apatite fission track and 40Ar/39Ar age spectrum data from sandstone drill-core minerals taken from depths of 2–5 km in nine wells from the Scotian Basin are presented and interpreted in terms of the thermal history of the basin and the provenance of its sediments. The focus of the study is a comparison of the data from these thermochronometers with each other and with previously published vitrinite reflectance and aromatization–isomerization (A–I) reactions in biomarker compounds from the same or nearby wells.Apatite fission track ages are generally in agreement with expectations in that they trend to zero at a depth of ~4 km (corrected bottom-hole temperature ~120 °C). Shallower (lower present temperature) samples are partially annealed; the degree of partial annealing correlates closely with the degree of A–I reactions. Both thermal indicators are activated over the temperature range 60–120 °C.Samples from two wells, Mic Mac J-77 and Erie D-26, are anomalous. They are more annealed than present formation temperatures would predict, an anomaly that is also indicated by the A–I data. These samples are interpreted as having experienced higher than present temperatures subsequent to deposition, possibly resulting from the passage of hot fluids related to localized volcanism or the sudden venting of an overpressured reservoir.K-feldspars record minor (< 20%) argon loss as a result of burial heating in the basin only at the greatest depths of the sampled range (> 4.3 km). This result is in agreement with the thermal models of the Scotian Basin and extrapolation of the A–I and fission track data to greater depths. The inferred argon loss implies an activation energy of 40 ± 4 kcal/mol for the smallest diffusion domains.The argon age spectra for samples that have not lost argon during residence in the basin provide evidence on the provenance of the sediments. K-feldspars from the Early Cretaceous Missisauga Formation have spectra that are similar to those obtained from K-feldspars from the Grenville Province of the Canadian Shield, whereas muscovites from the same formation give Cambrian to Carboniferous argon ages (mean 387 Ma), an indication of contributions from other source rocks. Corresponding data from the Jurassic Mohican Formation are similar to those reported for plutons from the southern Nova Scotia mainland (ca. 250–350 Ma argon ages). By implication, the Mohican Formation, which is the earliest postrift deposit, was derived from local sources inferred to be adjacent flank uplifts, whereas the Missisauga Formation was derived in part either directly or indirectly from the Grenvillian-aged interior of eastern Canada.


Sign in / Sign up

Export Citation Format

Share Document