scholarly journals Effect of the Thickness of the Piezoelectric Patches on the Active Control of a Thin Plate

2020 ◽  
Vol 22 (4) ◽  
pp. 1345-1354
Author(s):  
Mohamed Latrache ◽  
Mohamed N. Amrane

AbstractThis paper presents a numerical study pertaining to on the active vibration control (AVC) of the 3-D rectangle simply supported plate bonded of the piezoelectric sensor/actuator pairs. A LQR controller is designed based on the independent mode space control techniques to stifle the vibration of the system. The change in the thickness of the patches was a clear impact on the control results, and also in the values of the voltage in actuator. The results were established by simulating in ANSYS and MATLAB.

2020 ◽  
Vol 10 (6) ◽  
pp. 6549-6556
Author(s):  
K. G. Aktas ◽  
I. Esen

The aim of this study is to design a Linear Quadratic Regulator (LQR) controller for the active vibration control of a smart flexible cantilever beam. The mathematical model of the smart beam was created on the basis of the Euler-Bernoulli beam theory and the piezoelectric theory. State-space and finite element models used in the LQR controller design were developed. In the finite element model of the smart beam containing piezoelectric sensors and actuators, the beam was divided into ten finite elements. Each element had two nodes and two degrees of freedom were defined for each node, transverse displacement, and rotation. Two Piezoelectric ceramic lead Zirconate Titanate (PZT) patches were affixed to the upper and lower surfaces of the beam element as pairs of sensors and actuators. The location of the piezoelectric sensor and actuator pair changed and they were consecutively placed on the fixed part, the middle part, and the free end of the beam. In each case, the design of the LQR controller was made considering the first three dominant vibratory modes of the beam. The effect of the position of the sensor-actuator pair on the beam on the vibration damping capability of the controller was investigated. The best damping performance was found when the sensor-actuator pair was placed at the fixed end.


2018 ◽  
Vol 56 (1) ◽  
pp. 113 ◽  
Author(s):  
Vu Van Tham ◽  
Tran Huu Quoc ◽  
Tran Minh Tu

In this study, a finite element model based on first-order shear deformation theory is presented for optimal placement and active vibration control of laminated composite plates with bonded distributed piezoelectric sensor/actuator pairs. The model employs the nine-node isoparametric rectangular element with 5 degrees of freedom for the mechanical displacements, and 2 electrical degrees of freedom. Genetic algorithm (GA) is applied to maximize the fundamental natural frequencies of plates; and the constant feedback control method is used for the vibration control analysis of piezoelectric laminated composite plates. The results of this study can be used to aid the placement of piezoelectric sensor/actuator pairs of smart composite plates as well as for robust controller design.


Author(s):  
Ali H. Daraji ◽  
Jack M. Hale ◽  
Jianqiao Ye

Doubly curved stiffened shells are essential parts of many large-scale engineering structures, such as aerospace, automotive and marine structures. Optimization of active vibration reduction has not been properly investigated for this important group of structures. This study develops a placement methodology for such structures under motion base and external force excitations to optimize the locations of discrete piezoelectric sensor/actuator pairs and feedback gain using genetic algorithms for active vibration control. In this study, fitness and objective functions are proposed based on the maximization of sensor output voltage to optimize the locations of discrete sensors collected with actuators to attenuate several vibrations modes. The optimal control feedback gain is determined then based on the minimization of the linear quadratic index. A doubly curved composite shell stiffened by beams and bonded with discrete piezoelectric sensor/actuator pairs is modeled in this paper by first-order shear deformation theory using finite element method and Hamilton's principle. The proposed methodology is implemented first to investigate a cantilever composite shell to optimize four sensor/actuator pairs to attenuate the first six modes of vibration. The placement methodology is applied next to study a complex stiffened composite shell to optimize four sensor/actuator pairs to test the methodology effectiveness. The results of optimal sensor/actuator distribution are validated by convergence study in genetic algorithm program, ANSYS package and vibration reduction using optimal linear quadratic control scheme.


1987 ◽  
Author(s):  
ZORAN MARTINOVIC ◽  
RAPHAEL HAFTKA ◽  
WILLIAM HALLAUER, JR. ◽  
GEORGE SCHAMEL, II

Sign in / Sign up

Export Citation Format

Share Document