scholarly journals Linear Mixed Models: Gum and Beyond

2014 ◽  
Vol 14 (2) ◽  
pp. 52-61 ◽  
Author(s):  
Barbora Arendacká ◽  
Angelika Täubner ◽  
Sascha Eichstädt ◽  
Thomas Bruns ◽  
Clemens Elster

Abstract In Annex H.5, the Guide to the Evaluation of Uncertainty in Measurement (GUM) [1] recognizes the necessity to analyze certain types of experiments by applying random effects ANOVA models. These belong to the more general family of linear mixed models that we focus on in the current paper. Extending the short introduction provided by the GUM, our aim is to show that the more general, linear mixed models cover a wider range of situations occurring in practice and can be beneficial when employed in data analysis of long-term repeated experiments. Namely, we point out their potential as an aid in establishing an uncertainty budget and as means for gaining more insight into the measurement process. We also comment on computational issues and to make the explanations less abstract, we illustrate all the concepts with the help of a measurement campaign conducted in order to challenge the uncertainty budget in calibration of accelerometers.

Data ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 6 ◽  
Author(s):  
Alberto Gianinetti

Germination data are discrete and binomial. Although analysis of variance (ANOVA) has long been used for the statistical analysis of these data, generalized linear mixed models (GzLMMs) provide a more consistent theoretical framework. GzLMMs are suitable for final germination percentages (FGP) as well as longitudinal studies of germination time-courses. Germination indices (i.e., single-value parameters summarizing the results of a germination assay by combining the level and rapidity of germination) and other data with a Gaussian error distribution can be analyzed too. There are, however, different kinds of GzLMMs: Conditional (i.e., random effects are modeled as deviations from the general intercept with a specific covariance structure), marginal (i.e., random effects are modeled solely as a variance/covariance structure of the error terms), and quasi-marginal (some random effects are modeled as deviations from the intercept and some are modeled as a covariance structure of the error terms) models can be applied to the same data. It is shown that: (a) For germination data, conditional, marginal, and quasi-marginal GzLMMs tend to converge to a similar inference; (b) conditional models are the first choice for FGP; (c) marginal or quasi-marginal models are more suited for longitudinal studies, although conditional models lead to a congruent inference; (d) in general, common random factors are better dealt with as random intercepts, whereas serial correlation is easier to model in terms of the covariance structure of the error terms; (e) germination indices are not binomial and can be easier to analyze with a marginal model; (f) in boundary conditions (when some means approach 0% or 100%), conditional models with an integral approximation of true likelihood are more appropriate; in non-boundary conditions, (g) germination data can be fitted with default pseudo-likelihood estimation techniques, on the basis of the SAS-based code templates provided here; (h) GzLMMs are remarkably good for the analysis of germination data except if some means are 0% or 100%. In this case, alternative statistical approaches may be used, such as survival analysis or linear mixed models (LMMs) with transformed data, unless an ad hoc data adjustment in estimates of limit means is considered, either experimentally or computationally. This review is intended as a basic tutorial for the application of GzLMMs, and is, therefore, of interest primarily to researchers in the agricultural sciences.


2010 ◽  
Vol 26 (3) ◽  
pp. 497-514 ◽  
Author(s):  
Zai Xing Li ◽  
Li Xing Zhu ◽  
Ping Wu ◽  
Jian Hong Wu ◽  
Wang Li Xu

Sign in / Sign up

Export Citation Format

Share Document