scholarly journals Privacy-Preserving Multiple Tensor Factorization for Synthesizing Large-Scale Location Traces with Cluster-Specific Features

2021 ◽  
Vol 2021 (2) ◽  
pp. 5-26
Author(s):  
Takao Murakami ◽  
Koki Hamada ◽  
Yusuke Kawamoto ◽  
Takuma Hatano

Abstract With the widespread use of LBSs (Location-based Services), synthesizing location traces plays an increasingly important role in analyzing spatial big data while protecting user privacy. In particular, a synthetic trace that preserves a feature specific to a cluster of users (e.g., those who commute by train, those who go shopping) is important for various geo-data analysis tasks and for providing a synthetic location dataset. Although location synthesizers have been widely studied, existing synthesizers do not provide su˚cient utility, privacy, or scalability, hence are not practical for large-scale location traces. To overcome this issue, we propose a novel location synthesizer called PPMTF (Privacy-Preserving Multiple Tensor Factorization). We model various statistical features of the original traces by a transition-count tensor and a visit-count tensor. We factorize these two tensors simultaneously via multiple tensor factorization, and train factor matrices via posterior sampling. Then we synthesize traces from reconstructed tensors, and perform a plausible deniability test for a synthetic trace. We comprehensively evaluate PPMTF using two datasets. Our experimental results show that PPMTF preserves various statistical features including cluster-specific features, protects user privacy, and synthesizes large-scale location traces in practical time. PPMTF also significantly outperforms the state-of-theart methods in terms of utility and scalability at the same level of privacy.

2017 ◽  
Vol 20 (3) ◽  
pp. 2177-2192 ◽  
Author(s):  
Wonhee Cho ◽  
Eunmi Choi

Author(s):  
Joaquin Vanschoren ◽  
Ugo Vespier ◽  
Shengfa Miao ◽  
Marvin Meeng ◽  
Ricardo Cachucho ◽  
...  

Sensors are increasingly being used to monitor the world around us. They measure movements of structures such as bridges, windmills, and plane wings, human’s vital signs, atmospheric conditions, and fluctuations in power and water networks. In many cases, this results in large networks with different types of sensors, generating impressive amounts of data. As the volume and complexity of data increases, their effective use becomes more challenging, and novel solutions are needed both on a technical as well as a scientific level. Founded on several real-world applications, this chapter discusses the challenges involved in large-scale sensor data analysis and describes practical solutions to address them. Due to the sheer size of the data and the large amount of computation involved, these are clearly “Big Data” applications.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Jiangming Sun ◽  
Nina Jeliazkova ◽  
Vladimir Chupakhin ◽  
Jose-Felipe Golib-Dzib ◽  
Ola Engkvist ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lu Ou ◽  
Hui Yin ◽  
Zheng Qin ◽  
Sheng Xiao ◽  
Guangyi Yang ◽  
...  

Location-based services (LBSs) are increasingly popular in today’s society. People reveal their location information to LBS providers to obtain personalized services such as map directions, restaurant recommendations, and taxi reservations. Usually, LBS providers offer user privacy protection statement to assure users that their private location information would not be given away. However, many LBSs run on third-party cloud infrastructures. It is challenging to guarantee user location privacy against curious cloud operators while still permitting users to query their own location information data. In this paper, we propose an efficient privacy-preserving cloud-based LBS query scheme for the multiuser setting. We encrypt LBS data and LBS queries with a hybrid encryption mechanism, which can efficiently implement privacy-preserving search over encrypted LBS data and is very suitable for the multiuser setting with secure and effective user enrollment and user revocation. This paper contains security analysis and performance experiments to demonstrate the privacy-preserving properties and efficiency of our proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document