scholarly journals Closure of dilates of shift-invariant subspaces

2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Moisés Soto-Bajo

AbstractLet V be any shift-invariant subspace of square summable functions. We prove that if for some A expansive dilation V is A-refinable, then the completeness property is equivalent to several conditions on the local behaviour at the origin of the spectral function of V, among them the origin is a point of A*-approximate continuity of the spectral function if we assume this value to be one. We present our results also in a more general setting of A-reducing spaces. We also prove that the origin is a point of A*-approximate continuity of the Fourier transform of any semiorthogonal tight frame wavelet if we assume this value to be zero.

2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
Vadim Mogilevskii

A scalar distribution function σ(s) is called a spectral function for the Fourier transform φ^(s)=∫Reitsφ(t)dt (with respect to an interval I⊂R) if for each function φ∈L2(R) with support in I the Parseval identity ∫Rφ^s2dσ(s)=∫Rφt2dt holds. We show that in the case I=R there exists a unique spectral function σ(s)=(1/2π)s, in which case the above Parseval identity turns into the classical one. On the contrary, in the case of a finite interval I=(0,b), there exist infinitely many spectral functions (with respect to I). We introduce also the concept of the matrix-valued spectral function σ(s) (with respect to a system of intervals {I1,I2,…,In}) for the vector-valued Fourier transform of a vector-function φ(t)={φ1(t),φ2(t),…,φn(t)}∈L2(I,Cn), such that support of φj lies in Ij. The main result is a parametrization of all matrix (in particular scalar) spectral functions σ(s) for various systems of intervals {I1,I2,…,In}.


2019 ◽  
Vol 63 (1) ◽  
pp. 157-172
Author(s):  
A. San Antolín

AbstractWe give a characterization of all Parseval wavelet frames arising from a given frame multiresolution analysis. As a consequence, we obtain a description of all Parseval wavelet frames associated with a frame multiresolution analysis. These results are based on a version of Oblique Extension Principle with the assumption that the origin is a point of approximate continuity of the Fourier transform of the involved refinable functions. Our results are written for reducing subspaces.


2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


2021 ◽  
Vol 262 ◽  
pp. 117928
Author(s):  
Shusaku Nakajima ◽  
Shuhei Horiuchi ◽  
Akifumi Ikehata ◽  
Yuichi Ogawa

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lung-Hui Chen

Abstract In this paper, we discuss how to partially determine the Fourier transform F ⁢ ( z ) = ∫ - 1 1 f ⁢ ( t ) ⁢ e i ⁢ z ⁢ t ⁢ 𝑑 t , z ∈ ℂ , F(z)=\int_{-1}^{1}f(t)e^{izt}\,dt,\quad z\in\mathbb{C}, given the data | F ⁢ ( z ) | {\lvert F(z)\rvert} or arg ⁡ F ⁢ ( z ) {\arg F(z)} for z ∈ ℝ {z\in\mathbb{R}} . Initially, we assume [ - 1 , 1 ] {[-1,1]} to be the convex hull of the support of the signal f. We start with reviewing the computation of the indicator function and indicator diagram of a finite-typed complex-valued entire function, and then connect to the spectral invariant of F ⁢ ( z ) {F(z)} . Then we focus to derive the unimodular part of the entire function up to certain non-uniqueness. We elaborate on the translation of the signal including the non-uniqueness associates of the Fourier transform. We show that the phase retrieval and magnitude retrieval are conjugate problems in the scattering theory of waves.


Author(s):  
Angela A. Albanese ◽  
Claudio Mele

AbstractIn this paper we continue the study of the spaces $${\mathcal O}_{M,\omega }({\mathbb R}^N)$$ O M , ω ( R N ) and $${\mathcal O}_{C,\omega }({\mathbb R}^N)$$ O C , ω ( R N ) undertaken in Albanese and Mele (J Pseudo-Differ Oper Appl, 2021). We determine new representations of such spaces and we give some structure theorems for their dual spaces. Furthermore, we show that $${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$ O C , ω ′ ( R N ) is the space of convolutors of the space $${\mathcal S}_\omega ({\mathbb R}^N)$$ S ω ( R N ) of the $$\omega $$ ω -ultradifferentiable rapidly decreasing functions of Beurling type (in the sense of Braun, Meise and Taylor) and of its dual space $${\mathcal S}'_\omega ({\mathbb R}^N)$$ S ω ′ ( R N ) . We also establish that the Fourier transform is an isomorphism from $${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$ O C , ω ′ ( R N ) onto $${\mathcal O}_{M,\omega }({\mathbb R}^N)$$ O M , ω ( R N ) . In particular, we prove that this isomorphism is topological when the former space is endowed with the strong operator lc-topology induced by $${\mathcal L}_b({\mathcal S}_\omega ({\mathbb R}^N))$$ L b ( S ω ( R N ) ) and the last space is endowed with its natural lc-topology.


Sign in / Sign up

Export Citation Format

Share Document