strain level
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 134)

H-INDEX

34
(FIVE YEARS 7)

2022 ◽  
pp. 130-136
Author(s):  
Birgül CERİT ◽  
Hümeyra HANÇER TOK ◽  
Gülnur TEMELLİ

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 233
Author(s):  
Rosangela Marasco ◽  
Mariagiovanna Gazzillo ◽  
Nicoletta Campolattano ◽  
Margherita Sacco ◽  
Lidia Muscariello

In southern Italy, some artisanal farms produce mozzarella and caciocavallo cheeses by using natural whey starter (NWS), whose microbial diversity is responsible for the characteristic flavor and texture of the final product. We studied the microbial community of NWS cultures of cow’s milk (NWSc) for the production of caciocavallo and buffalo’s milk (NWSb) for the production of mozzarella, both from artisanal farms. Bacterial identification at species and strain level was based on an integrative strategy, combining culture-dependent (sequencing of the 16S rDNA, species/subspecies-specific Polymerase Chain Reaction (PCR) and clustering by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) and culture-independent (next-generation sequencing analysis, NGS) approaches. Results obtained with both approaches showed the occurrence of five species of lactic acid bacteria in NWSb (Lactococcus lactis subsp. lactis, Lactobacillus fermentum, Streptococcus thermophilus, Lactobacillus delbrueckii, and Lactobacillus helveticus) and five species in NWSc (Lc. lactis subsp. lactis, Enterococcus faecium, and S. thermophilus, Lb. helveticus, and Lb. delbrueckii), with the last two found only by the NGS analysis. Moreover, RAPD profiles, performed on Lc. lactis subsp. lactis different isolates from both NWSs, showed nine strains in NWSb and seven strains in NWSc, showing a microbial diversity also at strain level. Characterization of the microbiota of natural whey starters aims to collect new starter bacteria to use for tracing microbial community during the production of artisanal cheeses, in order to preserve their quality and authenticity, and to select new Lactic Acid Bacteria (LAB) strains for the production of functional foods.


2022 ◽  
Author(s):  
Wenfa Ng

Abstract Understanding the evolutionary relatedness of different strains of a species helped identify strain-specific differences that may be useful for disease diagnosis and treatment. Typically, such strain level typing would be augmented by molecular assays such as DNA sequencing, and phylogenetic tree analysis. This work utilizes public data on the 16S rRNA gene sequence of different strains of Helicobacter pylori to help plot the phylogenetic tree that describes the evolutionary trajectories of the different strains. Results from multiple sequence alignment reveals high level of conservation in 16S rRNA gene sequence across strains. This then translates into a phylogenetic tree structure that suggests very close evolutionary relationships of the different strains except for one outlier strain. Even in the case of the outlier strain, its evolutionary distance from other brethren was also not large. Overall, the results obtained in this study indicates that 16S rRNA gene may not capture strain-level phylogeny between different strains of the same species, and point to efforts in elucidating this phylogenetic effect in other genes of the species. Such genes may be involved in virulence during pathogenesis in humans, and may thus be subjected to higher evolutionary pressure and natural selection.


Author(s):  
Adam P. Lister ◽  
Callum J. Highmore ◽  
Niall Hanrahan ◽  
James Read ◽  
Alasdair P. S. Munro ◽  
...  

Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Wen Nie ◽  
Duanyi Wang ◽  
Yangguang Sun ◽  
Wei Xu ◽  
Xiaoquan Xiao

To comprehensively investigate the integrated structural and material design of the epoxy asphalt mixture used in steel bridge deck pavement, the following works have been conducted: 1. The strain level of steel bridge deck pavement was calculated; 2. The ultimate strain level of fatigue endurance for epoxy asphalt concrete was measured; 3. The effect of water tightness of epoxy asphalt mixture on the bonding performance of steel plate interface was tested. 4. For better performance evaluation, quantitative analysis of the anti-skid performance of epoxy asphalt mixture was carried out by testing the structure depth using a laser texture tester. Results show the following findings: 1. The fatigue endurance limit strain level of epoxy asphalt mixture (600 με) was higher than that of the steel bridge deck pavement (<300 με), indicating that the use of epoxy asphalt concrete has better flexibility and can achieve a longer service life in theory; 2. The epoxy asphalt concrete has significant water tightness to protect the steel plate interface from corrosion and ensure good bonding performance; 3. The porosity of epoxy asphalt mixture used in steel bridge deck paving should be controlled within 3%; 4. In terms of anti-skid performance of bridge deck pavement, the FAC-10 graded epoxy asphalt mixture is recommended when compared with EA-10C.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jiaqiang Wu ◽  
Haoyu Lang ◽  
Xiaohuan Mu ◽  
Zijing Zhang ◽  
Qinzhi Su ◽  
...  

Abstract Background Honey bee gut microbiota transmitted via social interactions are beneficial to the host health. Although the microbial community is relatively stable, individual variations and high strain-level diversity have been detected across honey bees. Although the bee gut microbiota structure is influenced by environmental factors, the heritability of the gut members and the contribution of the host genetics remains elusive. Considering bees within a colony are not readily genetically identical due to the polyandry of the queen, we hypothesize that the microbiota structure can be shaped by host genetics. Results We used shotgun metagenomics to simultaneously profile the microbiota and host genotypes of bees from hives of four different subspecies. Gut composition is more distant between genetically different bees at both phylotype- and “sequence-discrete population” levels. We then performed a successive passaging experiment within colonies of hybrid bees generated by artificial insemination, which revealed that the microbial composition dramatically shifts across batches of bees during the social transmission. Specifically, different strains from the phylotype of Snodgrassella alvi are preferentially selected by genetically varied hosts, and strains from different hosts show a remarkably biased distribution of single-nucleotide polymorphism in the Type IV pili loci. Genome-wide association analysis identified that the relative abundance of a cluster of Bifidobacterium strains is associated with the host glutamate receptor gene specifically expressed in the bee brain. Finally, mono-colonization of Bifidobacterium with a specific polysaccharide utilization locus impacts the alternative splicing of the gluR-B gene, which is associated with an increased GABA level in the brain. Conclusions Our results indicated that host genetics influence the bee gut composition and suggest a gut-brain connection implicated in the gut bacterial strain preference. Honey bees have been used extensively as a model organism for social behaviors, genetics, and the gut microbiome. Further identification of host genetic function as a shaping force of microbial structure will advance our understanding of the host-microbe interactions.


Author(s):  
Martin Sperfeld ◽  
Dayana Yahalomi ◽  
Einat Segev

Microalgae are key ecological players with a complex evolutionary history. Genomic diversity, in addition to limited availability of high-quality genomes, challenge studies that aim to elucidate molecular mechanisms underlying microalgal ecophysiology. Here, we present a novel and comprehensive transcriptomic hybrid approach to generate a reference for genetic analyses, and resolve the microalgal gene landscape at the strain level. The approach is demonstrated for a strain of the coccolithophore microalga Emiliania huxleyi , which is a species complex with considerable genome variability. The investigated strain is commonly studied as a model for algal-bacterial interactions, and was therefore sequenced in the presence of bacteria to elicit the expression of interaction-relevant genes. We applied complementary PacBio Iso-Seq full-length cDNA, and poly(A)-independent Illumina total RNA sequencing, which resulted in a de novo assembled, near complete hybrid transcriptome. In particular, hybrid sequencing improved the reconstruction of long transcripts and increased the recovery of full-length transcript isoforms. To use the resulting hybrid transcriptome as a reference for genetic analyses, we demonstrate a method that collapses the transcriptome into a genome-like dataset, termed “synthetic genome” (sGenome). We used the sGenome as a reference to visually confirm the robustness of the CCMP3266 gene assembly, to conduct differential gene expression analysis, and to characterize novel E. huxleyi genes. The newly-identified genes contribute to our understanding of E. huxleyi genome diversification, and are predicted to play a role in microbial interactions. Our transcriptomic toolkit can be implemented in various microalgae to facilitate mechanistic studies on microalgal diversity and ecology. Importance Microalgae are key players in the ecology and biogeochemistry of our oceans. Efforts to implement genomic and transcriptomic tools in laboratory studies involving microalgae suffer from the lack of published genomes. In the case of coccolithophore microalgae, the problem has long been recognized; the model species Emiliania huxleyi is a species complex with genomes composed of a core, and a large variable portion. To study the role of the variable portion in niche adaptation, and specifically in microbial interactions, strain-specific genetic information is required. Here we present a novel transcriptomic hybrid approach, and generated strain-specific genome-like information. We demonstrate our approach on an E. huxleyi strain that is co-cultivated with bacteria. By constructing a “synthetic genome”, we generated comprehensive gene annotations that enabled accurate analyses of gene expression patterns. Importantly, we unveiled novel genes in the variable portion of E. huxleyi that play putative roles in microbial interactions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brett Wagner Mackenzie ◽  
Melissa Zoing ◽  
Fiona Clow ◽  
David W. Waite ◽  
Fiona J. Radcliff ◽  
...  

AbstractThe role of Staphylococcus aureus in the pathogenesis of the chronic sinonasal disease chronic rhinosinusitis (CRS), has not been definitively established. Comparative analyses of S. aureus isolates from CRS with those from control participants may offer insight into a possible pathogenic link between this organism and CRS. The intra- and inter-subject S. aureus strain-level diversity in the sinuses of patients with and without CRS were compared in this cross-sectional study. In total, 100 patients (CRS = 64, control = 36) were screened for S. aureus carriage. The overall carriage prevalence of S. aureus in this cohort was 24% (CRS n = 13, control n = 11). Cultured S. aureus isolates from 18 participants were strain-typed using spa gene sequencing. The bacterial community composition of the middle meatus was assessed using amplicon sequencing targeting the V3V4 hypervariable region of the bacterial 16S rRNA gene. S. aureus isolates cultured from patients were grown in co-culture with the commensal bacterium Dolosigranulum pigrum and characterised. All participants harboured a single S. aureus strain and no trend in disease-specific strain-level diversity was observed. Bacterial community analyses revealed a significant negative correlation in the relative abundances of S. aureus and D. pigrum sequences, suggesting an antagonistic interaction between these organisms. Co-cultivation experiments with these bacteria, however, did not confirm this interaction in vitro. We saw no significant associations of CRS disease with S. aureus strain types. The functional role that S. aureus occupies in CRS likely depends on other factors such as variations in gene expression and interactions with other members of the sinus bacterial community.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Qinzhi Su ◽  
Qinglin Wang ◽  
Xiaohuan Mu ◽  
Hao Chen ◽  
Yujie Meng ◽  
...  

Abstract Background Microbial acquisition and development of the gut microbiota impact the establishment of a healthy host-microbes symbiosis. Compared with other animals, the eusocial bumblebees and honeybees possess a simple, recurring, and similar set of gut microbiota. However, all bee gut phylotypes have high strain-level diversity. Gut communities of different bee species are composed of host-specific groups of strains. The variable genomic regions among strains of the same species often confer critical functional differences, such as carbon source utilization, essential for the natural selection of specific strains. The annual bumblebee colony founded by solitary queens enables tracking the transmission routes of gut bacteria during development stages. Results Here, we first showed the changes in the microbiome of individual bumblebees across their holometabolous life cycle. Some core gut bacteria persist throughout different stages of development. Gut microbiota of newly emerged workers always resembles those of their queens, suggesting a vertical transmission of strains from queens to the newborn workers. We then follow the dynamic changes in the gut community by comparing strain-level metagenomic profiles of queen-worker pairs longitudinally collected across different stages of the nest development. Species composition of both queen and worker shifts with the colony’s growth, and the queen-to-worker vertical inheritance of specific strains was identified. Finally, comparative metagenome analysis showed clear host-specificity for microbes across different bee hosts. Species from honeybees often possess a higher level of strain variation, and they also exhibited more complex gene repertoires linked to polysaccharide digestion. Our results demonstrate bacterial transmission events in bumblebee, highlighting the role of social interactions in driving the microbiota composition. Conclusions By the community-wide metagenomic analysis based on the custom genomic database of bee gut bacteria, we reveal strain transmission events at high resolution and the dynamic changes in community structure along with the colony development. The social annual life cycle of bumblebees is key for the acquisition and development of the gut microbiota. Further studies using the bumblebee model will advance our understanding of the microbiome transmission and the underlying mechanisms, such as strain competition and niche selection.


Sign in / Sign up

Export Citation Format

Share Document