energy concentration
Recently Published Documents


TOTAL DOCUMENTS

610
(FIVE YEARS 138)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Qing-Yan Li ◽  
Yu Zhang ◽  
Shi-Yu Yan ◽  
Bin Zhang ◽  
Chun-Hui Wang

Abstract 3D lidar has been widely used in various fields. The MEMS scanning system is one of its most important components, while the limitation of scanning angle is the main obstacle for its application in various fields to improve the demerit. In this paper, a folded large field of view scanning optical system is proposed. The structure and parameters of the system are determined by theoretical derivation of ray tracing. The optical design software Zemax is used to design the system. After optimization, the final structure performs well in collimation and beam expansion. The results show that the scan angle can be expanded from ±5° to ±26.5°, and finally parallel light scanning is realized. The spot diagram at a distance of 100 mm from the exit surface shows that the maximum radius of the spot is 0.506 mm with a uniformly distributed spot. The maximum radius of the spot at 100 m is 19 cm, and the diffusion angle is less than 2 mrad. The energy concentration in the spot range is greater than 90% with a high system energy concentration, and the parallelism is good. This design overcomes the shortcoming of the small mechanical scanning angle of the MEMS lidar, and has good performance in collimation and beam expansion. It provides a design method for large-scale application of MEMS lidar.


2022 ◽  
Author(s):  
Andrzej Kulowski

Abstract After introducing Leonardo da Vinci’s (LdV) predecessors in the field of light propagation research, his drawings on the topic of focussing light through a spherical mirror are analysed. The discovery of LdV is presented, according to which, at an infinitely distant source of rays, a small fragment of the canopy is enough to generate a focus, while the rest of the mirror forms caustics for which LdV did not indicate an application. An analytical description of the energy concentration in the focus and on the caustics is given, together with its reference to the geometric representation of the acoustic field in rooms. Using symmetry in the description of energy relations in acoustics and electromagnetism, the interference that occurs on the caustics produced by the acoustic and electromagnetic wave is discussed. It is explained why in the sound field in existing halls, instead of a whole caustic only its cusp is observed, which is perceived as a point-like sound focus. The size of the mirror aperture, shown graphically by LdV, is determined. How the development of receiving techniques increased the mirror aperture compared to the LdV estimate is also shown. The implementation of these improvements is presented via the example of the Arecibo and FAST radio telescopes.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jiong Li ◽  
Lu Feng

Blind source separation is a widely used technique to analyze multichannel data. In most real-world applications, noise is inevitable and will affect the quality of signal separation and even make signal separation failure. In this paper, a new signal processing framework is proposed to separate noisy mixing sources. It is composed of two different stages. The first step is to process the mixing signal by a certain signal transform method to make the expected signals have energy concentration characteristics in the transform domain. The second stage is formed by a certain BSS algorithm estimating the demixing matrix in the transform domain. In the energy concentration segment, the SNR can reach a high level so that the demixing matrix can be estimated accurately. The analysis process of the proposed algorithm framework is analyzed by taking the wavelet transform as an example. Numerical experiments demonstrate the efficiency of the proposed algorithm to estimate the mixing matrix in comparison with well-known algorithms.


2021 ◽  
pp. 0958305X2110635
Author(s):  
M. Nourpour ◽  
M. H. Khoshgoftar Manesh ◽  
A. Pirozfar ◽  
M. Delpisheh

The high amount of solar energy as clean and sustainable energy has increased awareness in solar energy concentration, especially in integrated concepts. One of the best and promising hybrid configurations for converting solar energy into power is an integrated solar combined cycle system (ISCCS). In this study, conventional and advanced analysis tools for the ISCCS located in Yazd (Iran) have been investigated. In this paper, thermodynamic simulation, exergy, exergoeconomic, and exergoenvironmental analysis based on Life Cycle Assessment (LCA) have been performed. In addition, an emergy-based concept, including emergoeconomic and emergoenvironmental assessment, has been performed. In-depth analysis of exergy, exergoeconomic, and exergoenvironmental modelling, advanced exergy analysis based on endogenous/exogenous and avoidable/unavoidable parts have been done. In this regard, MATLAB code has been developed for thermodynamic simulation, exergy, exergoeconomic, exergoenvironment, emergoeconomic and emergoenvironment analysis. Furthermore, THERMOFLEX (commercial software) applied for thermodynamic simulation and verification. The Sankey diagram based on each analysis tool has been constructed. Furthermore, the priority of improvement based on each analysis has been identified. The thermal efficiency and net power generation of ISCCS are 48.25% and 419600 kW, respectively. It was obsereved that in most equipment, less than 10% of exergy destruction and cost and environmental impact rates were avoidable/endogenous.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nina Batorek-Lukač ◽  
Marjeta Čandek-Potokar ◽  
Martin Škrlep ◽  
Valentina Kubale ◽  
Etienne Labussière

Nutritional requirements of heavy immunocastrated (IM) pigs and therefore appropriate feeding strategies have not yet been determined. Thus, the effects of changes in dietary net energy (NE) content were studied in 41 IM pigs, fed ad libitum diets with low, medium, and high NE content (LNE, MNE, and HNE diets, with 8.5, 9.3, and 10.0 MJ NE/kg, respectively), from 84 days of age until slaughter at an average age of 172 days and an average body weight of 122.5 kg. In the period from 143 to 170 days of age, there was a tendency for a greater NE intake (p = 0.08) in pigs fed the HNE diet along with greater (p < 0.01) backfat gain. Dietary treatment affected carcass composition, as lower backfat thickness (p = 0.01) and lower area of fat over the longissimus muscle (p = 0.05) were observed in the LNE and MNE pigs. In addition, greater lean meat content (p = 0.04) was observed in the LNE pigs. Reducing the NE of the diet by replacement of cereals and soybean meal with high-fiber ingredients resulted in lower indole production in the ascending colon (p < 0.01) and greater skatole production (p < 0.01) in the cecum. Greater villus area, width, height and perimeter, crypt depth, and thickness of the intestinal mucosa in the jejunum, ileum, ascending colon, and descending colon were found in the LNE group (p < 0.01) than in the HNE group, while those in the MNE group was intermediate. Cell proliferation was not affected by dietary treatment (p > 0.05). The present results show that a reduction in dietary NE concentration lowers lipid deposition, without affecting performance or energy efficiency in IM pigs. This technique provides an advantage in terms of improved leanness, without affecting growth rate in IM pigs after immunization, which is particularly important when the backfat thickness is a determinant of carcass value and IM pigs are fattened to higher weights (e.g., in heavy pig production) or when a longer delay between immunization and slaughter is practiced.


Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2354
Author(s):  
Tong In Oh ◽  
Min Ji Kang ◽  
You Jeong Jung ◽  
Tingting Zhang ◽  
Seung Geun Yeo ◽  
...  

The successful management of cervical intraepithelial neoplasia (CIN) with proper screening and treatment methods could prevent cervical cancer progression. We propose a bioimpedance spectroscopic measurement device and a multi-electrode probe as an independent screening tool for CIN. To evaluate the performance of this screening method, we enrolled 123 patients, including 69 patients with suspected CIN and 54 control patients without cervical dysplasia who underwent a hysterectomy for benign disease (non-CIN). Following conization, the electrical properties of the excised cervical tissue were characterized using an electrical bioimpedance spectroscopy-based multi-electrode probe. Twenty-eight multifrequency voltages were collected through the two concentric array electrodes via a sensitivity-optimized measurement protocol based on an electrical energy concentration method. The electrical properties of the CIN and non-CIN groups were compared with the results of the pathology reports. Reconstructed resistivity tended to decrease in the CIN and non-CIN groups as frequency increased. Reconstructed resistivity from 625 Hz to 50 kHz differed significantly between the CIN and non-CIN groups (p < 0.001). Using 100 kHz as the reference, the difference between the CIN and non-CIN groups was significant. Based on the difference in reconstructed resistivity between 100 kHz and the other frequencies, this method had a sensitivity of 94.3%, a specificity of 84%, and an accuracy of 90% in CIN screening. The feasibility of noninvasive CIN screening was confirmed through the difference in the frequency spectra evaluated in the excised tissue using the electrical bioimpedance spectroscopy-based multi-electrode screening probe.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3297
Author(s):  
Yuri Eremin ◽  
Vladimir Lopushenko

Magnetoplasmonics based on composite nanostructures is widely used in many biomedical applications. Nanostructures, consisting of a magnetic core and a gold shell, exhibit plasmonic properties, that allow the concentration of electromagnetic energy in ultra-small volumes when used, for example, in imaging and therapy. Magnetoplasmonic nanostructures have become an indispensable tool in nanomedicine. The gold shell protects the core from oxidation and corrosion, providing a biocompatible platform for tumor imaging and cancer treatment. By adjusting the size of the core and the shell thickness, the maximum energy concentration can be shifted from the ultraviolet to the near infrared, where the depth of light penetration is maximum due to low scattering and absorption by tissues. A decrease in the thickness of the gold shell to several nanometers leads to the appearance of the quantum effect of spatial dispersion in the metal. The presence of the quantum effect can cause both a significant decrease in the level of energy concentration by plasmon particles and a shift of the maxima to the short-wavelength region, thereby reducing the expected therapeutic effect. In this study, to describe the influence of the quantum effect of spatial dispersion, we used the discrete sources method, which incorporates the generalized non-local optical response theory. This approach made it possible to account for the influence of the nonlocal effect on the optical properties of composite nanoparticles, including the impact of the asymmetry of the core-shell structure on the energy characteristics. It was found that taking spatial dispersion into account leads to a decrease in the maximum value of the concentration of electromagnetic energy up to 25%, while the blue shift can reach 15 nm.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1483
Author(s):  
Muhammad Shoaib ◽  
Rafaqat Ali Khan ◽  
Hakeem Ullah ◽  
Kottakkaran Sooppy Nisar ◽  
Muhammad Asif Zahoor Raja ◽  
...  

The technique of Levenberg–Marquardt back propagation with neural networks (TLMB-NN) was used in this research article to investigate the heat transfer of Maxwell base fluid flow of nanomaterials (HTM-BFN) with MHD over vertical moving surfaces. In this study, the effects of thermal energy, concentration, and Brownian motion are also employed. Moreover, the impacts of a heat-absorbing fluid with viscous dissipation and radiation have been explored. To simplify the governing equations from a stiff to a simple system of non-linear ODEs, we exploited the efficacy of suitable similarity transformation mechanism. Through applicability of state-of-the-art Adams numerical technique, a set of data for suggested (TLMB-NN) is generated for several situations (scenarios) by changing parameters, such as the Thermophoresis factor Nt, Hartmann number M, Eckert number Ec, concentration Grashoff parameter Gc, Prandtl number Pr, Lewis number Le, thermal Grashof number GT, and Brownian motion factor Nb. The estimate solution of different instances has validated using the (TLMB-NN) training, testing, and validation method, and the recommended model was compared for excellence. Following that, regression analysis, mean square error, and histogram explorations are used to validate the suggested (TLMB-NN). The proposed technique is distinguished based on the proximity of the proposed and reference findings, with an accuracy level ranging from 10−9 to 10−10.


Sign in / Sign up

Export Citation Format

Share Document