On the frame of the unit ball of Banach spaces

2014 ◽  
Vol 12 (11) ◽  
Author(s):  
Ryotaro Tanaka

AbstractThe notion of the frame of the unit ball of Banach spaces was introduced to construct a new calculation method for the Dunkl-Williams constant. In this paper, we characterize the frame of the unit ball by using k-extreme points and extreme points of the unit ball of two-dimensional subspaces. Furthermore, we show that the frame of the unit ball is always closed, and is connected if the dimension of the space is not less than three. As infinite dimensional examples, the frame of the unit balls of c 0 and ℓ p are determined.

1986 ◽  
Vol 29 (2) ◽  
pp. 271-282 ◽  
Author(s):  
Ioannis A. Polyrakis

The study of extreme, strongly exposed points of closed, convex and bounded sets in Banach spaces has been developed especially by the interconnection of the Radon–Nikodým property with the geometry of closed, convex and bounded subsets of Banach spaces [5],[2] . In the theory of ordered Banach spaces as well as in the Choquet theory, [4], we are interested in the study of a special type of convex sets, not necessarily bounded, namely the bases for the positive cone. In [7] the geometry (extreme points, dentability) of closed and convex subsets K of a Banach space X with the Radon-Nikodým property is studied and special emphasis has been given to the case where K is a base for acone P of X. In [6, Theorem 1], it is proved that an infinite-dimensional, separable, locally solid lattice Banach space is order-isomorphic to l1 if, and only if, X has the Krein–Milman property and its positive cone has a bounded base.


2018 ◽  
Vol 61 (2) ◽  
pp. 487-500
Author(s):  
KEVIN BEANLAND ◽  
NOAH DUNCAN ◽  
MICHAEL HOLT ◽  
JAMES QUIGLEY

AbstractA norm ‖ċ‖ on c00 is called combinatorial if there is a regular family of finite subsets $\mathcal{F}$, so that $\|x\|=\sup_{F \in \mathcal{F}} \sum_{i \in F} |x(i)|$. We prove the set of extreme points of the ball of a combinatorial Banach space is countable. This extends a theorem of Shura and Trautman. The second contribution of this article is to exhibit many new examples of extreme points for the unit ball of dual Tsirelson's original space and give an explicit construction of an uncountable collection of extreme points of the ball of Tsirelson's original space. We also prove some stability properties of the intermediate norms used to define Tsirelson's space and give a lower bound of the stabilization function for these intermediate norms.


2014 ◽  
Vol 90 (2) ◽  
pp. 304-310 ◽  
Author(s):  
RYOTARO TANAKA

AbstractIn this paper, it is proved that every isometry between the unit spheres of two real Banach spaces preserves the frames of the unit balls. As a consequence, if $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}X$ and $Y$ are $n$-dimensional Banach spaces and $T_0$ is an isometry from the unit sphere of $X$ onto that of $Y$ then it maps the set of all $(n-1)$-extreme points of the unit ball of $X$ onto that of $Y$.


2005 ◽  
Vol 72 (2) ◽  
pp. 299-315 ◽  
Author(s):  
D. Caponetti ◽  
A. Trombetta ◽  
G. Trombetta

In this paper we consider the Wośko problem of evaluating, in an infinite-dimensional Banach space X, the infimum of all k ≤ 1 for which there exists a k-ball contractive retraction of the unit ball onto its boundary. We prove that in some classical Banach spaces the best possible value 1 is attained. Moreover we give estimates of the lower H-measure of noncompactness of the retractions we construct.


2003 ◽  
Vol 2003 (2) ◽  
pp. 101-110 ◽  
Author(s):  
Kazimierz Goebel

We provide some new estimates of the smallest possible Lipschitz constant for retractions of the unit ballBonto the unit sphereSin infinite-dimensional Banach spaces.


2014 ◽  
Vol 57 (1) ◽  
pp. 42-50 ◽  
Author(s):  
Vladimir P. Fonf ◽  
Clemente Zanco

AbstractWe prove that, given any covering of any infinite-dimensional Hilbert space H by countably many closed balls, some point exists in H which belongs to infinitely many balls. We do that by characterizing isomorphically polyhedral separable Banach spaces as those whose unit sphere admits a point-finite covering by the union of countably many slices of the unit ball.


2001 ◽  
Vol 33 (4) ◽  
pp. 443-453 ◽  
Author(s):  
DANIEL AZAGRA ◽  
MANUEL CEPEDELLO BOISO

Let X be an infinite-dimensional Banach space, and let A be a Cp Lipschitz bounded starlike body (for instance the unit ball of a smooth norm). We prove that:(1) the boundary ∂A is Cp Lipschitz contractible;(2) there is a Cp Lipschitz retraction from A onto ∂A;(3) there is a Cp Lipschitz map T : A → A with no approximate fixed points.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Ahmed Morsy ◽  
Nashat Faried ◽  
Samy A. Harisa ◽  
Kottakkaran Sooppy Nisar

AbstractIn this work, we establish an approach to constructing compact operators between arbitrary infinite-dimensional Banach spaces without a Schauder basis. For this purpose, we use a countable number of basic sequences for the sake of verifying the result of Morrell and Retherford. We also use a nuclear operator, represented as an infinite-dimensional matrix defined over the space $\ell _{1}$ℓ1 of all absolutely summable sequences. Examples of nuclear operators over the space $\ell _{1}$ℓ1 are given and used to construct operators over general Banach spaces with specific approximation numbers.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 150
Author(s):  
Andriy Zagorodnyuk ◽  
Anna Hihliuk

In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type can be represented as a union of infinite dimensional linear subspaces (without the origin). Moreover, we show that for some cases, the set of entire functions of unbounded type generated by a given sequence of polynomials contains an infinite dimensional algebra (without the origin). Some applications for symmetric analytic functions on Banach spaces are obtained.


Sign in / Sign up

Export Citation Format

Share Document