lipschitz map
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

2022 ◽  
Vol 69 (1) ◽  
pp. 1-32
Author(s):  
Abbas Edalat

We derive new representations for the generalised Jacobian of a locally Lipschitz map between finite dimensional real Euclidean spaces as the lower limit (i.e., limit inferior) of the classical derivative of the map where it exists. The new representations lead to significantly shorter proofs for the basic properties of the subgradient and the generalised Jacobian including the chain rule. We establish that a sequence of locally Lipschitz maps between finite dimensional Euclidean spaces converges to a given locally Lipschitz map in the L-topology—that is, the weakest refinement of the sup norm topology on the space of locally Lipschitz maps that makes the generalised Jacobian a continuous functional—if and only if the limit superior of the sequence of directional derivatives of the maps in a given vector direction coincides with the generalised directional derivative of the given map in that direction, with the convergence to the limit superior being uniform for all unit vectors. We then prove our main result that the subspace of Lipschitz C ∞ maps between finite dimensional Euclidean spaces is dense in the space of Lipschitz maps equipped with the L-topology, and, for a given Lipschitz map, we explicitly construct a sequence of Lipschitz C ∞ maps converging to it in the L-topology, allowing global smooth approximation of a Lipschitz map and its differential properties. As an application, we obtain a short proof of the extension of Green’s theorem to interval-valued vector fields. For infinite dimensions, we show that the subgradient of a Lipschitz map on a Banach space is upper continuous, and, for a given real-valued Lipschitz map on a separable Banach space, we construct a sequence of Gateaux differentiable functions that converges to the map in the sup norm topology such that the limit superior of the directional derivatives in any direction coincides with the generalised directional derivative of the Lipschitz map in that direction.


2018 ◽  
Vol 6 (1) ◽  
pp. 174-191 ◽  
Author(s):  
Giuliano Basso

AbstractWe consider Lipschitz maps with values in quasi-metric spaces and extend such maps to finitely many points. We prove that in this context every 1-Lipschitz map admits an extension such that its Lipschitz constant is bounded from above by the number of added points plus one. Moreover, we prove that if the source space is a Hilbert space and the target space is a Banach space, then there exists an extension such that its Lipschitz constant is bounded from above by the square root of the total of added points plus one. We discuss applications to metric transforms.


2018 ◽  
Vol 10 (04) ◽  
pp. 933-940
Author(s):  
Rodolfo Viera

In this work, positive functions defined on the plane are considered from a generic viewpoint, both in the continuous and bounded setting. By pursuing on constructions of Burago–Kleiner and McMullen, we show that, generically, such a function cannot be written as the Jacobian of a bi-Lipschitz homeomorphism.


2017 ◽  
Vol 2019 (8) ◽  
pp. 2241-2265
Author(s):  
Scott Zimmerman

Abstract Wenger and Young proved that the pair $(\mathbb{R}^m,\mathbb{H}^n)$ has the Lipschitz extension property for $m \leq n$ where $\mathbb{H}^n$ is the sub-Riemannian Heisenberg group. That is, for some $C>0$, any $L$-Lipschitz map from a subset of $\mathbb{R}^m$ into $\mathbb{H}^n$ can be extended to a $CL$-Lipschitz mapping on $\mathbb{R}^m$. In this article, we construct Sobolev extensions of such Lipschitz mappings with no restriction on the dimension $m$. We prove that any Lipschitz mapping from a compact subset of $\mathbb{R}^m$ into $\mathbb{H}^n$ may be extended to a Sobolev mapping on any bounded domain containing the set. More generally, we prove this result in the case of mappings into any Lipschitz $(n-1)$-connected metric space.


2016 ◽  
Vol 57 (3) ◽  
pp. 641-673 ◽  
Author(s):  
Armin Eftekhari ◽  
Michael B. Wakin
Keyword(s):  

2015 ◽  
Vol 17 (1) ◽  
pp. 39-57 ◽  
Author(s):  
Raf Cluckers ◽  
Florent Martin

A direct application of Zorn’s lemma gives that every Lipschitz map $f:X\subset \mathbb{Q}_{p}^{n}\rightarrow \mathbb{Q}_{p}^{\ell }$ has an extension to a Lipschitz map $\widetilde{f}:\mathbb{Q}_{p}^{n}\rightarrow \mathbb{Q}_{p}^{\ell }$. This is analogous to, but easier than, Kirszbraun’s theorem about the existence of Lipschitz extensions of Lipschitz maps $S\subset \mathbb{R}^{n}\rightarrow \mathbb{R}^{\ell }$. Recently, Fischer and Aschenbrenner obtained a definable version of Kirszbraun’s theorem. In this paper, we prove in the $p$-adic context that $\widetilde{f}$ can be taken definable when $f$ is definable, where definable means semi-algebraic or subanalytic (or some intermediary notion). We proceed by proving the existence of definable Lipschitz retractions of $\mathbb{Q}_{p}^{n}$ to the topological closure of $X$ when $X$ is definable.


2015 ◽  
Vol 07 (04) ◽  
pp. 677-692 ◽  
Author(s):  
Barry Minemyer

In this paper we consider piecewise linear (pl) isometric embeddings of Euclidean polyhedra into Euclidean space. A Euclidean polyhedron is just a metric space [Formula: see text] which admits a triangulation [Formula: see text] such that each n-dimensional simplex of [Formula: see text] is affinely isometric to a simplex in 𝔼n. We prove that any 1-Lipschitz map from an n-dimensional Euclidean polyhedron [Formula: see text] into 𝔼3n is ϵ-close to a pl isometric embedding for any ϵ > 0. If we remove the condition that the map be pl, then any 1-Lipschitz map into 𝔼2n + 1 can be approximated by a (continuous) isometric embedding. These results are extended to isometric embedding theorems of spherical and hyperbolic polyhedra into Euclidean space by the use of the Nash–Kuiper C1 isometric embedding theorem ([9] and [13]).


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Sean Li

Abstract Let f : G → H be a Lipschitz map between two Carnot groups. We show that if B is a ball of G, then there exists a subset Z ⊂ B, whose image in H under f has small Hausdorff content, such that B\Z can be decomposed into a controlled number of pieces, the restriction of f on each of which is quantitatively biLipschitz. This extends a result of [14], which proved the same result, but with the restriction that G has an appropriate discretization. We provide an example of a Carnot group not admitting such a discretization.


2015 ◽  
Vol 8 (3) ◽  
Author(s):  
Sara Daneri ◽  
Aldo Pratelli

AbstractWe prove that, given a planar bi-Lipschitz map


Sign in / Sign up

Export Citation Format

Share Document