Thermoelasticity of thin shells based on the time-fractional heat conduction equation

Open Physics ◽  
2013 ◽  
Vol 11 (6) ◽  
Author(s):  
Yuriy Povstenko

AbstractThe time-nonlocal generalizations of Fourier’s law are analyzed and the equations of the generalized thermoelasticity based on the time-fractional heat conduction equation with the Caputo fractional derivative of order 0 < α ≤ 2 are presented. The equations of thermoelasticity of thin shells are obtained under the assumption of linear dependence of temperature on the coordinate normal to the median surface of a shell. The conditions of Newton’s convective heat exchange between a shell and the environment have been assumed. In the particular case of classical heat conduction (α = 1) the obtained equations coincide with those known in the literature.

2017 ◽  
Vol 9 (2) ◽  
pp. 378-392
Author(s):  
Ahmed. E. Abouelregal

AbstractIn this work, we introduce a mathematical model for the theory of generalized thermoelasticity with fractional heat conduction equation. The presented model will be applied to an infinitely long hollow cylinder whose inner surface is traction free and subjected to a thermal and mechanical shocks, while the external surface is traction free and subjected to a constant heat flux. Some theories of thermoelasticity can extracted as limited cases from our model. Laplace transform methods are utilized to solve the problem and the inverse of the Laplace transform is done numerically using the Fourier expansion techniques. The results for the temperature, the thermal stresses and the displacement components are illustrated graphically for various values of fractional order parameter. Moreover, some particular cases of interest have also been discussed.


2014 ◽  
Vol 12 (4) ◽  
Author(s):  
Yuriy Povstenko

AbstractThe central symmetric time-fractional heat conduction equation with Caputo derivative of order 0 < α ≤ 2 is considered in a ball under two types of Robin boundary condition: the mathematical one with the prescribed linear combination of values of temperature and values of its normal derivative at the boundary, and the physical condition with the prescribed linear combination of values of temperature and values of the heat flux at the boundary, which is a consequence of Newton’s law of convective heat exchange between a body and the environment. The integral transform technique is used. Numerical results are illustrated graphically.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 689 ◽  
Author(s):  
Yuriy Povstenko ◽  
Tamara Kyrylych

The time-fractional heat conduction equation follows from the law of conservation of energy and the corresponding time-nonlocal extension of the Fourier law with the “long-tail” power kernel. The time-fractional heat conduction equation with the Caputo derivative is solved for an infinite plane with two external half-infinite slits with the prescribed heat flux across their surfaces. The integral transform technique is used. The solution is obtained in the form of integrals with integrand being the Mittag–Leffler function. A graphical representation of numerical results is given.


Author(s):  
Yuriy Povstenko

AbstractThe heat conduction equation is considered in a composite body consisting of two regions: 0 <


Author(s):  
Claudia Bucur ◽  
Fausto Ferrari

AbstractWe prove that the (nonlocal) Marchaud fractional derivative in ℝ can be obtained from a parabolic extension problem with an extra (positive) variable as the operator that maps the heat conduction equation to the Neumann condition. Some properties of the fractional derivative are deduced from those of the local operator. In particular, we prove a Harnack inequality for Marchaud-stationary functions.


2018 ◽  
Vol 13 (1) ◽  
pp. 5 ◽  
Author(s):  
Rafał Brociek ◽  
Damian Słota

This paper describes an algorithm for reconstruction the boundary condition and order of derivative for the heat conduction equation of fractional order. This fractional order derivative was applied to time variable and was defined as the Caputo derivative. The heat transfer coefficient, occurring in the boundary condition of the third kind, was reconstructed. Additional information for the considered inverse problem is given by the temperature measurements at selected points of the domain. The direct problem was solved by using the implicit finite difference method. To minimize functional defining the error of approximate solution an Artificial Bee Colony (ABC) algorithm and Nelder-Mead method were used. In order to stabilize the procedure the Tikhonov regularization was applied. The paper presents examples to illustrate the accuracy and stability of the presented algorithm.


Sign in / Sign up

Export Citation Format

Share Document