Reconstruction of the Robin boundary condition and order of derivative in time fractional heat conduction equation

2018 ◽  
Vol 13 (1) ◽  
pp. 5 ◽  
Author(s):  
Rafał Brociek ◽  
Damian Słota

This paper describes an algorithm for reconstruction the boundary condition and order of derivative for the heat conduction equation of fractional order. This fractional order derivative was applied to time variable and was defined as the Caputo derivative. The heat transfer coefficient, occurring in the boundary condition of the third kind, was reconstructed. Additional information for the considered inverse problem is given by the temperature measurements at selected points of the domain. The direct problem was solved by using the implicit finite difference method. To minimize functional defining the error of approximate solution an Artificial Bee Colony (ABC) algorithm and Nelder-Mead method were used. In order to stabilize the procedure the Tikhonov regularization was applied. The paper presents examples to illustrate the accuracy and stability of the presented algorithm.


2014 ◽  
Vol 12 (4) ◽  
Author(s):  
Yuriy Povstenko

AbstractThe central symmetric time-fractional heat conduction equation with Caputo derivative of order 0 < α ≤ 2 is considered in a ball under two types of Robin boundary condition: the mathematical one with the prescribed linear combination of values of temperature and values of its normal derivative at the boundary, and the physical condition with the prescribed linear combination of values of temperature and values of the heat flux at the boundary, which is a consequence of Newton’s law of convective heat exchange between a body and the environment. The integral transform technique is used. Numerical results are illustrated graphically.





Author(s):  
Yuriy Povstenko

AbstractThe time-fractional heat conduction equation with the Caputo derivative of the order 0 < α ≤ 2 is considered in an infinite medium with a spherical hole in the central symmetric case under two types of Robin boundary condition: the mathematical one with the prescribed linear combination of the values of temperature and the values of its normal derivative at the boundary and the physical condition with the prescribed linear combination of the values of temperature and the values of the heat flux at the boundary. The integral transforms techniques are used. Several particular cases of the obtained solutions are analyzed. The numerical results are illustrated graphically.



2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Monika Žecová ◽  
Ján Terpák

The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.



Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 689 ◽  
Author(s):  
Yuriy Povstenko ◽  
Tamara Kyrylych

The time-fractional heat conduction equation follows from the law of conservation of energy and the corresponding time-nonlocal extension of the Fourier law with the “long-tail” power kernel. The time-fractional heat conduction equation with the Caputo derivative is solved for an infinite plane with two external half-infinite slits with the prescribed heat flux across their surfaces. The integral transform technique is used. The solution is obtained in the form of integrals with integrand being the Mittag–Leffler function. A graphical representation of numerical results is given.



Sign in / Sign up

Export Citation Format

Share Document