Asymptotic formulas for certain arithmetic functions

2008 ◽  
Vol 58 (3) ◽  
Author(s):  
M. Garaev ◽  
M. Kühleitner ◽  
F. Luca ◽  
W. Nowak

AbstractThis is an extended summary of a talk given by the last named author at the Czecho-Slovake Number Theory Conference 2005, held at Malenovice in September 2005. It surveys some recent results concerning asymptotics for a class of arithmetic functions, including, e.g., the second moments of the number-of-divisors function d(n) and of the function r(n) which counts the number of ways to write a positive integer as a sum of two squares. For the proofs, reference is made to original articles by the authors published elsewhere.

2010 ◽  
Vol 87 (101) ◽  
pp. 121-128
Author(s):  
Koninck De ◽  
Imre Kátai

Let ? stand for the Euler function. Given a positive integer n, let ?(n) stand for the sum of the positive divisors of n and let ?(n) be the number of divisors of n. We obtain an asymptotic estimate for the counting function of the set {n : gcd (?(n), ?(n)) = gcd(?(n), ?(n)) = 1}. Moreover, setting l(n) : = gcd(?(n), ?(n+1)), we provide an asymptotic estimate for the size of #{n ? x: l(n) = 1}.


1958 ◽  
Vol 1 (3) ◽  
pp. 149-153
Author(s):  
P. Erdős

Let f(x) be an increasing function. Recently there have been several papers which proved that under fairly general conditions on f(x) the density of integers n for which (n, f(n)) = 1 is 6/π2 and that (d(n) denotes the number of divisors of n)In particular both of these results hold if f(x) = xα, 0 < α < 1 and the first holds if f(x) = [α x], α irrational.


2004 ◽  
Vol 89 (516) ◽  
pp. 403-408
Author(s):  
P. G. Brown

In many of the basic courses in Number Theory, Finite Mathematics and Cryptography we come across the so-called arithmetic functions such as ϕn), σ(n), τ(n), μ(n), etc, whose domain is the set of natural numbers. These functions are well known and evaluated through the prime factor decomposition of n. It is less well known that these functions possess inverses (with respect to Dirichlet multiplication) which have interesting properties and applications.


2005 ◽  
Vol 01 (04) ◽  
pp. 563-581 ◽  
Author(s):  
A. KNOPFMACHER ◽  
M. E. MAYS

The general field of additive number theory considers questions concerning representations of a given positive integer n as a sum of other integers. In particular, partitions treat the sums as unordered combinatorial objects, and compositions treat the sums as ordered. Sometimes the sums are restricted, so that, for example, the summands are distinct, or relatively prime, or all congruent to ±1 modulo 5. In this paper we review work on analogous problems concerning representations of n as a product of positive integers. We survey techniques for enumerating product representations both in the unrestricted case and in the case when the factors are required to be distinct, and both when the product representations are considered as ordered objects and when they are unordered. We offer some new identities and observations for these and related counting functions and derive some new recursive algorithms to generate lists of factorizations with restrictions of various types.


1985 ◽  
Vol 27 ◽  
pp. 5-10
Author(s):  
S. A. Burr ◽  
P. Erdös

Let A be a sequence of positive integers. Define P(A) to be the set of all integers representable as a sum of distinct terms of A. Note that if A contains a repeated value, we are free to use it as many times as it occurs in A. We call A complete if every sufficiently large positive integer is in P(A), and entirely complete if every positive integer is in P(A). Completeness properties have received considerable, if somewhat sporadic, attention over the years. See Chapter 6 of [3] for a survey.


2013 ◽  
Vol 11 (1) ◽  
Author(s):  
Javier Cilleruelo ◽  
Florian Luca ◽  
Juanjo Rué ◽  
Ana Zumalacárregui

AbstractLet b ≥ 2 be a fixed positive integer. We show for a wide variety of sequences {a n}n=1∞ that for almost all n the sum of digits of a n in base b is at least c b log n, where c b is a constant depending on b and on the sequence. Our approach covers several integer sequences arising from number theory and combinatorics.


Lord Cherwell (i) was, of course, a very distinguished ex-perimental physicist but he had (like many others) a considerable active interest in the theory of numbers. I met him in 1930 when Christ Church, Oxford, elected me to a Senior (postgraduate) Scholarship and I migrated there from my original college. Cherwell’s first published work (2) in the theory of numbers was a very simple and elegant proof of the fundamental theorem of arithmetic, that any positive integer can be expressed as a product of prime numbers in just one way (apart from a possible rearrangement of the order of the factors). (A prime is a positive integer greater than 1 whose only factors are 1 and itself.) His proof is by the method of descent (used by Fermat, but not for this problem). Assume the fundamental theorem false and call any number that can be expressed as a product of primes in two or more ways abnormal.


1939 ◽  
Vol 31 ◽  
pp. xvi-xxiii
Author(s):  
S. A. Scott

§ 1. The importance of proving inequalities of an essentially algebraic nature by “elementary” methods has been emphasised by Hardy (Prolegomena to a Chapter on Inequalities), and by Hardy, Littlewood and Polya (Inequalities). The object of this Note is to show how some of the results in the early stages of Number Theory can be obtained by making a minimum appeal to irrational numbers and the notion of a limit. We use the elementary notion of a logarithm to a base “a” > 1, and make no appeal to the exponential function. The Binomial Theorem is only used for a positive integer index. Our minimum appeal rests in the assumption that a bounded monotone sequence tends to a limit. We adopt throughout the usual notation. Finally, it need scarcely be added that the methods employed are not claimed to be new.


2018 ◽  
Vol 14 (05) ◽  
pp. 1487-1503
Author(s):  
Nicholas Schwab ◽  
Lola Thompson

A positive integer [Formula: see text] is practical if every [Formula: see text] can be written as a sum of distinct divisors of [Formula: see text]. One can generalize the concept of practical numbers by applying an arithmetic function [Formula: see text] to each of the divisors of [Formula: see text] and asking whether all integers in a certain interval can be expressed as sums of [Formula: see text]’s, where the [Formula: see text]’s are distinct divisors of [Formula: see text]. We will refer to such [Formula: see text] as “[Formula: see text]-practical”. In this paper, we introduce the [Formula: see text]-practical numbers for the first time. We give criteria for when all [Formula: see text]-practical numbers can be constructed via a simple necessary-and-sufficient condition, demonstrate that it is possible to construct [Formula: see text]-practical sets with any asymptotic density, and prove a series of results related to the distribution of [Formula: see text]-practical numbers for many well-known arithmetic functions [Formula: see text].


2021 ◽  
Vol 29 (1) ◽  
pp. 63-68
Author(s):  
Artur Korniłowicz ◽  
Dariusz Surowik

Summary In this paper problems 14, 15, 29, 30, 34, 78, 83, 97, and 116 from [6] are formalized, using the Mizar formalism [1], [2], [3]. Some properties related to the divisibility of prime numbers were proved. It has been shown that the equation of the form p 2 + 1 = q 2 + r 2, where p, q, r are prime numbers, has at least four solutions and it has been proved that at least five primes can be represented as the sum of two fourth powers of integers. We also proved that for at least one positive integer, the sum of the fourth powers of this number and its successor is a composite number. And finally, it has been shown that there are infinitely many odd numbers k greater than zero such that all numbers of the form 22 n + k (n = 1, 2, . . . ) are composite.


Sign in / Sign up

Export Citation Format

Share Document