scholarly journals Maximal subsemigroups containing a particular semigroup

2014 ◽  
Vol 64 (6) ◽  
Author(s):  
Jörg Koppitz ◽  
Tiwadee Musunthia

AbstractWe characterize maximal subsemigroups of the monoid T(X) of all transformations on the set X = ℕ of natural numbers containing a given subsemigroup W of T(X) such that T(X) is finitely generated over W. This paper gives a contribution to the characterization of maximal subsemigroups on the monoid of all transformations on an infinite set.

2017 ◽  
Vol 29 (4) ◽  
Author(s):  
Tiwadee Musunthia ◽  
Jörg Koppitz

AbstractIn this paper, we study the maximal subsemigroups of several semigroups of order-preserving transformations on the natural numbers and the integers, respectively. We determine all maximal subsemigroups of the monoid of all order-preserving injections on the set of natural numbers as well as on the set of integers. Further, we give all maximal subsemigroups of the monoid of all bijections on the integers. For the monoid of all order-preserving transformations on the natural numbers, we classify also all its maximal subsemigroups, containing a particular set of transformations.


1982 ◽  
Vol 91 (3) ◽  
pp. 357-374 ◽  
Author(s):  
P. M. Cohn ◽  
A. H. Schofield

In chapter 7 of (2) conditions were given for a ring to be embeddable in a skew field; in particular, it was shown that any semifir has a universal field of fractions, over which all full matrices can be inverted. This was generalized in two different directions, by Bergman (in a letter to one of the authors in 1971) and by Dicks and Sontag(7). Dicks and Sontag characterized those rings having a field of fractions in which all full matrices are inverted; they showed that this is equivalent to Sylvester's law of nullity, and further showed that this forces the ring to have weak global dimension not exceeding 2 and all finitely generated projective modules to be free. Bergman on the other hand investigated weakly semihereditary rings having a rank function on projective modules which takes values in the natural numbers. He showed that there was a homomorphism from any such ring to a field of fractions in which every full map between finitely generated projective modules is inverted. Weakly semihereditary rings with a rank function to the natural numbers are the analogue of semifirs and so it is natural to look for a characterization of rings with a rank function on projective modules such that all full maps between projective modules become invertible in a suitable field of fractions. We shall find that, as before, this is the case if and only if Sylvester's law of nullity holds with respect to the rank function, for maps between projective modules. Further, the ring must have weak global dimension at most two. This is the content of Sections 2 and 3.


2020 ◽  
Vol 23 (5) ◽  
pp. 801-829
Author(s):  
Mark Pengitore

AbstractThe function {\mathrm{F}_{G}(n)} gives the maximum order of a finite group needed to distinguish a nontrivial element of G from the identity with a surjective group morphism as one varies over nontrivial elements of word length at most n. In previous work [M. Pengitore, Effective separability of finitely generated nilpotent groups, New York J. Math. 24 2018, 83–145], the author claimed a characterization for {\mathrm{F}_{N}(n)} when N is a finitely generated nilpotent group. However, a counterexample to the above claim was communicated to the author, and consequently, the statement of the asymptotic characterization of {\mathrm{F}_{N}(n)} is incorrect. In this article, we introduce new tools to provide lower asymptotic bounds for {\mathrm{F}_{N}(n)} when N is a finitely generated nilpotent group. Moreover, we introduce a class of finitely generated nilpotent groups for which the upper bound of the above article can be improved. Finally, we construct a class of finitely generated nilpotent groups N for which the asymptotic behavior of {\mathrm{F}_{N}(n)} can be fully characterized.


Author(s):  
Alonso Castillo-Ramirez

For a group [Formula: see text] and a set [Formula: see text], let [Formula: see text] be the monoid of all cellular automata over [Formula: see text], and let [Formula: see text] be its group of units. By establishing a characterization of surjunctive groups in terms of the monoid [Formula: see text], we prove that the rank of [Formula: see text] (i.e. the smallest cardinality of a generating set) is equal to the rank of [Formula: see text] plus the relative rank of [Formula: see text] in [Formula: see text], and that the latter is infinite when [Formula: see text] has an infinite decreasing chain of normal subgroups of finite index, condition which is satisfied, for example, for any infinite residually finite group. Moreover, when [Formula: see text] is a vector space over a field [Formula: see text], we study the monoid [Formula: see text] of all linear cellular automata over [Formula: see text] and its group of units [Formula: see text]. We show that if [Formula: see text] is an indicable group and [Formula: see text] is finite-dimensional, then [Formula: see text] is not finitely generated; however, for any finitely generated indicable group [Formula: see text], the group [Formula: see text] is finitely generated if and only if [Formula: see text] is finite.


2003 ◽  
Vol 31 (9) ◽  
pp. 4195-4214 ◽  
Author(s):  
Alberto Facchini ◽  
Dolors Herbera ◽  
Iskhak Sakhajev

Author(s):  
Susan D'Agostino

“Proceed with care, because some infinities are larger than others” explains in detail why the infinite set of real numbers—all of the numbers on the number line—represents a far larger infinity than the infinite set of natural numbers—the counting numbers. Readers learn to distinguish between countable infinity and uncountable infinity by way of a method known as a “one-to-one correspondence.” Mathematics students and enthusiasts are encouraged to proceed with care in both mathematics and life, lest they confuse countable infinity with uncountable infinity, large with unfathomably large, or order with disorder. At the chapter’s end, readers may check their understanding by working on a problem. A solution is provided.


1982 ◽  
Vol 25 (4) ◽  
pp. 487-490
Author(s):  
Gerd Rodé

AbstractThis paper gives a new characterization of the dimension of a normal Hausdorff space, which joins together the Eilenberg-Otto characterization and the characterization by finite coverings. The link is furnished by the notion of a system of faces of a certain type (N1,..., NK), where N1,..., NK, K are natural numbers. It is shown that a space X contains a system of faces of type (N1,..., NK) if and only if dim(X) ≥ N1 + … + NK. The two limit cases of the theorem, namely Nk = 1 for 1 ≤ k ≤ K on the one hand, and K = 1 on the other hand, give the two known results mentioned above.


1969 ◽  
Vol 16 (3) ◽  
pp. 195-203 ◽  
Author(s):  
A. D. Sands

Let R be a ring and I an infinite set. We denote by M(R) the ring of row finite matrices over I with entries in R. The set I will be omitted from the notation, as the same index set will be used throughout the paper. For convenience it will be assumed that the set of natural numbers is a subset of I.


Sign in / Sign up

Export Citation Format

Share Document