Paul Erdőos, Vance Faber, and Jean Larson Sets of natural numbers of positive density and cylindric set algebras of dimension 2. Algebra universalis, vol. 12 (1981), pp. 81–92. - Jean A. Larson The number of one-generated diagonal-free cylindric set algebras of finite dimension greater than two. Algebra universalis, vol. 16 (1983), pp. 1–16. - Jean A. Larson The number of finitely generated infinite cylindric set algebras of dimension two. Algebra universalis, vol. 19 (1984), pp. 377–396. - Jean A. Larson The number of one-generated cylindric set algebras of dimension greater than two. The journal of symbolic logic, vol. 50 (1985), pp. 59–71.

2001 ◽  
Vol 7 (2) ◽  
pp. 281-283
Author(s):  
R. D. Maddux
1981 ◽  
Vol 12 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Paul Erdös ◽  
Vance Faber ◽  
Jean Larson

1982 ◽  
Vol 25 (3) ◽  
pp. 237-243 ◽  
Author(s):  
B. A. F. Wehrfritz

If F is a (commutative) field let denote the class of all groups G such that every irreducible FG-module has finite dimension over F. The introduction to [7] contains motivation for considering these classes and surveys some of the results to date concerning them. In [7] for every field F we determined the finitely generated soluble groups in . Here, for fields F of characteristic zero, we determine, at least in principle, the soluble groups in . Our main result is the following.


2003 ◽  
Vol 74 (1) ◽  
pp. 61-68
Author(s):  
Young Ho Im ◽  
Yongkunk Kim

AbstractLetNbe a closeds-Hopfiann-manifold with residually finite, torsion free π1(N) and finiteH1(N). Suppose that either πk(N) is finitely generated for allk≥ 2, or πk(N) ≅ 0 for 1 <k<n– 1, orn≤ 4. We show that ifNfails to be a co-dimension 2 fibrator, thenNcyclically covers itself, up to homotopy type.


1985 ◽  
Vol 50 (4) ◽  
pp. 865-873
Author(s):  
H. Andréka ◽  
I. Németi

The theory of cylindric algebras (CA's) is the algebraic theory of first order logics. Several ideas about logic are easier to formulate in the frame of CA-theory. Such are e.g. some concepts of abstract model theory (cf. [1] and [10]–[12]) as well as ideas about relationships between several axiomatic theories of different similarity types (cf. [4] and [10]). In contrast with the relationship between Boolean algebras and classical propositional logic, CA's correspond not only to classical first order logic but also to several other ones. Hence CA-theoretic results contain more information than their counterparts in first order logic. For more about this see [1], [3], [5], [9], [10] and [12].Here we shall use the notation and concepts of the monographs Henkin-Monk-Tarski [7] and [8]. ω denotes the set of natural numbers. CAα denotes the class of all cylindric algebras of dimension α; by “a CAα” we shall understand an element of the class CAα. The class Dcα ⊆ CAα was defined in [7]. Note that Dcα = 0 for α ∈ ω. The classes Wsα, and Csα were defined in 1.1.1 of [8], p. 4. They are called the classes of all weak cylindric set algebras, regular cylindric set algebras and cylindric set algebras respectively. It is proved in [8] (I.7.13, I.1.9) that ⊆ CAα. (These inclusions are proper by 7.3.7, 1.4.3 and 1.5.3 of [8].)It was proved in 2.3.22 and 2.3.23 of [7] that every simple, finitely generated Dcα is generated by a single element. This is the algebraic counterpart of a property of first order logics (cf. 2.3.23 of [7]). The question arose: for which simple CAα's does “finitely generated” imply “generated by a single element” (see p. 291 and Problem 2.3 in [7]). In terms of abstract model theory this amounts to asking the question: For which logics does the property described in 2.3.23 of [7] hold? This property is roughly the following. In any maximal theory any finite set of concepts is definable in terms of a single concept. The connection with CA-theory is that maximal theories correspond to simple CA's (the elements of which are the concepts of the original logic) and definability corresponds to generation.


1999 ◽  
Vol 64 (4) ◽  
pp. 1563-1572 ◽  
Author(s):  
Maarten Marx ◽  
Szabolcs Mikulás

AbstractThe aim of this paper is to give a new proof for the decidability and finite model property of first-order logic with two variables (without function symbols), using a combinatorial theorem due to Herwig. The results are proved in the framework of polyadic equality set algebras of dimension two (Pse2). The new proof also shows the known results that the universal theory of Pse2 is decidable and that every finite Pse2 can be represented on a finite base. Since the class Cs2 of cylindric set algebras of dimension 2 forms a reduct of Pse2, these results extend to Cs2 as well.


2000 ◽  
Vol 65 (1) ◽  
pp. 371-391 ◽  
Author(s):  
John T. Baldwin ◽  
Kitty Holland

AbstractWe provide a general framework for studying the expansion of strongly minimal sets by adding additional relations in the style of Hrushovski. We introduce a notion of separation of quantifiers which is a condition on the class of expansions of finitely generated models for the expanded theory to have a countable ω-saturated model. We apply these results to construct for each sufficiently fast growing finite-to-one function μ from ‘primitive extensions’ to the natural numbers a theory Tμ of an expansion of an algebraically closed field which has Morley rank 2. Finally, we show that if μ is not finite-to-one the theory may not be ω-stable.


1968 ◽  
Vol 64 (3) ◽  
pp. 599-602 ◽  
Author(s):  
D. B. A Epstein

In this paper we describe a group G such that for any simple coefficients A and for any i > 0, Hi(G; A) and Hi(G; A) are zero. Other groups with this property have been found by Baumslag and Gruenberg (1). The group G in this paper has cohomological dimension 2 (that is Hi(G; A) = 0 for any i > 2 and any G-module A). G is the fundamental group of an open aspherical 3-dimensional manifold L, and is not finitely generated. The only non-trivial part of this paper is to prove that the fundamental group of the 3-manifold L, which we shall construct, is not the identity group.


Sign in / Sign up

Export Citation Format

Share Document