scholarly journals Numerical methods for solving the multi-term time-fractional wave-diffusion equation

Author(s):  
Fawang Liu ◽  
Mark Meerschaert ◽  
Robert McGough ◽  
Pinghui Zhuang ◽  
Qingxia Liu

AbstractIn this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.

2020 ◽  
Vol 23 (3) ◽  
pp. 822-836
Author(s):  
Shengda Zeng ◽  
Stanisław Migórski ◽  
Van Thien Nguyen ◽  
Yunru Bai

AbstractTwo significant inequalities for generalized time fractional derivatives at extreme points are obtained. Then, we apply the inequalities to establish the maximum principles for multi-term time-space fractional variable-order operators. Finally, we employ the principles to investigate two kinds of diffusion equations involving generalized time-fractional Caputo derivatives and space-fractional Riesz-Caputo derivatives.


2021 ◽  
Vol 24 (5) ◽  
pp. 1571-1600
Author(s):  
Yulong Li

Abstract This paper investigates the structure of solutions to the BVP of a class of fractional ordinary differential equations involving both fractional derivatives (R-L or Caputo) and fractional Laplacian with variable coefficients. This family of equations generalize the usual fractional diffusion equation and fractional Laplace equation. We provide a deep insight to the structure of the solutions shared by this family of equations. The specific decomposition of the solution is obtained, which consists of the “good” part and the “bad” part that precisely control the regularity and singularity, respectively. Other associated properties of the solution will be characterized as well.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1975
Author(s):  
M. Luísa Morgado ◽  
Magda Rebelo ◽  
Luís L. Ferrás

In this work, stable and convergent numerical schemes on nonuniform time meshes are proposed, for the solution of distributed-order diffusion equations. The stability and convergence of the numerical methods are proven, and a set of numerical results illustrate that the use of particular nonuniform time meshes provides more accurate results than the use of a uniform mesh, in the case of nonsmooth solutions.


2021 ◽  
Vol 26 (2) ◽  
pp. 241-258
Author(s):  
Qiang Li ◽  
Guotao Wang ◽  
Mei Wei

This paper considers the initial boundary value problem for the time-space fractional delayed diffusion equation with fractional Laplacian. By using the semigroup theory of operators and the monotone iterative technique, the existence and uniqueness of mild solutions for the abstract time-space evolution equation with delay under some quasimonotone conditions are obtained. Finally, the abstract results are applied to the time-space fractional delayed diffusion equation with fractional Laplacian operator, which improve and generalize the recent results of this issue.


Author(s):  
Hengfei Ding ◽  
Changpin Li

AbstractNumerical methods for fractional calculus attract increasing interest due to its wide applications in various fields such as physics, mechanics, etc. In this paper, we focus on constructing high-order algorithms for Riesz derivatives, where the convergence orders cover from the second order to the sixth order. Then we apply the established schemes to the Riesz type turbulent diffusion equation (or, Riesz space fractional turbulent diffusion equation). Numerical experiments are displayed which support the theoretical analysis.


2011 ◽  
Vol 52 ◽  
pp. 395 ◽  
Author(s):  
Qianqian Yang ◽  
Tim Moroney ◽  
Kevin Burrage ◽  
Ian Turner ◽  
Fawang Liu

Sign in / Sign up

Export Citation Format

Share Document