scholarly journals Stress Analysis of Dental Implant Inserted in the Mandible

2018 ◽  
Vol 68 (1) ◽  
pp. 25-32
Author(s):  
Agnieszka Łagoda ◽  
Adam Niesłony

Abstract The aim of the paper is to obtain the values of dental implant stress analysis. The dental implant was inserted in the part of mandible bone. Stress analysis was carried out using the Finite Elements Method and simplified models.

2016 ◽  
Vol 7 (6) ◽  
pp. 649-652
Author(s):  
Oleg Ardatov ◽  
Algirdas Maknickas ◽  
Rimantas Kačianauskas

The article presents modeling of human lumbar vertebra L1 and it‘s stress analysis using finite elements method. The problem of tissue degradation is raised. Using the computer aided modeling with SolidWorks software the numerical model of lumbar vertebra and intervertebral disks were created. The article contains statistics of spreading of osteoporosis, description of modeling meth-ods and the results of bending test for various types of tissue degradation. Straipsnyje yra atliekamas stuburo juosmeninės dalies slankstelio (L1) modeliavimas ir tyrimas baigtinių elementų metodu (BEM). Yra sukuriamas erdvinis skaitinis modelis programinės įrangos SolidWorks aplinkoje. Sudaroma slankstelio skaičiuojamoji schema, modeliui suteikiama lenkimo apkrova sagitalinėje ir frontalinėje plokštumoje. Nagrinėjamas modelio įtemptasis būvis kartu simuliuojant senėjimo procesų ir osteoporozės poveikį, kuris pasireiškia audinio silpnėjimu. Audinio degradacija yra modeliuojama taikant empiriniu būdu nustatytas išraiškas, kurios nurodo priklausomybes tarp mechaninių savybių ir akytojo kaulo tankio.


2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Sebastián Irarrázaval ◽  
Jorge Andrés Ramos-Grez ◽  
Luis Ignacio Pérez ◽  
Pablo Besa ◽  
Angélica Ibáñez

AbstractThe finite elements method allied with the computerized axial tomography (CT) is a mathematical modeling technique that allows constructing computational models for bone specimens from CT data. The objective of this work was to compare the experimental biomechanical behavior by three-point bending tests of porcine femur specimens with different types of computational models generated through the finite elements’ method and a multiple density materials assignation scheme. Using five femur specimens, 25 scenarios were created with differing quantities of materials. This latter was applied to computational models and in bone specimens subjected to failure. Among the three main highlights found, first, the results evidenced high precision in predicting experimental reaction force versus displacement in the models with larger number of assigned materials, with maximal results being an R2 of 0.99 and a minimum root-mean-square error of 3.29%. Secondly, measured and computed elastic stiffness values follow same trend with regard to specimen mass, and the latter underestimates stiffness values a 6% in average. Third and final highlight, this model can precisely and non-invasively assess bone tissue mechanical resistance based on subject-specific CT data, particularly if specimen deformation values at fracture are considered as part of the assessment procedure.


1982 ◽  
Vol 14 (7) ◽  
pp. 865-867
Author(s):  
B. A. Kravchenko ◽  
V. G. Fokin ◽  
G. N. Gutman

Sign in / Sign up

Export Citation Format

Share Document