scholarly journals Nonnegative definite hermitian matrices with increasing principal minors

2013 ◽  
Vol 1 ◽  
pp. 1-2 ◽  
Author(s):  
Shmuel Friedland
Author(s):  
Constanze Liaw ◽  
Sergei Treil ◽  
Alexander Volberg

Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $d$ perturbations $A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$, ${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$, with ${\operatorname{Ran}}{\textbf{B}}$ being cyclic for $A$, parametrized by $d\times d$ Hermitian matrices ${\boldsymbol{\alpha }}$, the singular parts of the spectral measures of $A$ and $A_{\boldsymbol{\alpha }}$ are mutually singular for all ${\boldsymbol{\alpha }}$ except for a small exceptional set $E$. It was shown earlier by the 1st two authors, see [4], that $E$ is a subset of measure zero of the space $\textbf{H}(d)$ of $d\times d$ Hermitian matrices. In this paper, we show that the set $E$ has small Hausdorff dimension, $\dim E \le \dim \textbf{H}(d)-1 = d^2-1$.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Andreas Blommaert ◽  
Thomas G. Mertens ◽  
Henri Verschelde

Abstract It was proven recently that JT gravity can be defined as an ensemble of L × L Hermitian matrices. We point out that the eigenvalues of the matrix correspond in JT gravity to FZZT-type boundaries on which spacetimes can end. We then investigate an ensemble of matrices with 1 ≪ N ≪ L eigenvalues held fixed. This corresponds to a version of JT gravity which includes N FZZT type boundaries in the path integral contour and which is found to emulate a discrete quantum chaotic system. In particular this version of JT gravity can capture the behavior of finite-volume holographic correlators at late times, including erratic oscillations.


1991 ◽  
Vol 7 (3) ◽  
pp. 397-403 ◽  
Author(s):  
Kenneth Nordström

Alternative definitions of the concentration ellipsoid of a random vector are surveyed, and an extension of the concentration ellipsoid of Darmois is suggested as being the most convenient and natural definition. The advantage of the proposed definition in providing substantially simplified proofs of results in (linear) estimation theory is discussed, and is illustrated by new and short proofs of two key results. A not-so-well-known, but elementary, extremal representation of a nonnegative definite quadratic form, together with the corresponding Cauchy-Schwarẓ-type inequality, is seen to play a crucial role in these proofs.


1970 ◽  
Vol 11 (1) ◽  
pp. 81-83 ◽  
Author(s):  
Yik-Hoi Au-Yeung

We denote by F the field R of real numbers, the field C of complex numbers, or the skew field H of real quaternions, and by Fn an n dimensional left vector space over F. If A is a matrix with elements in F, we denote by A* its conjugate transpose. In all three cases of F, an n × n matrix A is said to be hermitian if A = A*, and we say that two n × n hermitian matrices A and B with elements in F can be diagonalized simultaneously if there exists a non singular matrix U with elements in F such that UAU* and UBU* are diagonal matrices. We shall regard a vector u ∈ Fn as a l × n matrix and identify a 1 × 1 matrix with its single element, and we shall denote by diag {A1, …, Am} a diagonal block matrix with the square matrices A1, …, Am lying on its diagonal.


2004 ◽  
Vol 289 (1-3) ◽  
pp. 119-127 ◽  
Author(s):  
Béla Bollobás ◽  
Vladimir Nikiforov
Keyword(s):  

2017 ◽  
Vol 2019 (4) ◽  
pp. 1005-1029 ◽  
Author(s):  
Arno B J Kuijlaars ◽  
Pablo Román

Sign in / Sign up

Export Citation Format

Share Document