scholarly journals Remarks on small sets on the real line Remarks on small sets on the real line

2009 ◽  
Vol 42 (1) ◽  
pp. 73-80
Author(s):  
Małgorzata Filipczak ◽  
Elžbieta Wagner-Bojakowska

Abstract We consider two kinds of small subsets of the real line: the sets of strong measure zero and the microscopic sets. There are investigated the properties of these sets. The example of a microscopic set, which is not a set of strong measure zero, is given.

1990 ◽  
Vol 55 (2) ◽  
pp. 674-677
Author(s):  
Janusz Pawlikowski

AbstractAny finite support iteration of posets with precalibre ℵ1 which has the length of cofinahty greater than ω1 yields a model for the dual Borel conjecture in which the real line is covered by ℵ1 strong measure zero sets.


1999 ◽  
Vol 64 (3) ◽  
pp. 1295-1306 ◽  
Author(s):  
Marion Scheepers

AbstractIn a previous paper—[17]—we characterized strong measure zero sets of reals in terms of a Ramseyan partition relation on certain subspaces of the Alexandroff duplicate of the unit interval. This framework gave only indirect access to the relevant sets of real numbers. We now work more directly with the sets in question, and since it costs little in additional technicalities, we consider the more general context of metric spaces and prove:1. If a metric space has a covering property of Hurewicz and has strong measure zero, then its product with any strong measure zero metric space is a strong measure zero metric space (Theorem 1 and Lemma 3).2. A subspace X of a σ-compact metric space Y has strong measure zero if, and only if, a certain Ramseyan partition relation holds for Y (Theorem 9).3. A subspace X of a σ-compact metric space Y has strong measure zero in all finite powers if, and only if, a certain Ramseyan partition relation holds for Y (Theorem 12).Then 2 and 3 yield characterizations of strong measure zeroness for σ-totally bounded metric spaces in terms of Ramseyan theorems.


2016 ◽  
Vol 55 (1-2) ◽  
pp. 105-131
Author(s):  
Michael Hrušák ◽  
Wolfgang Wohofsky ◽  
Ondřej Zindulka

1996 ◽  
Vol 61 (1) ◽  
pp. 246-249 ◽  
Author(s):  
Marion Scheepers

Let denote the ideal of Lebesgue measure zero subsets of the real line. Then add() denotes the minimal cardinality of a subset of whose union is not an element of . In [1] Bartoszynski gave an elegant combinatorial characterization of add(), namely: add() is the least cardinal number κ for which the following assertion fails:For every family of at mostκ functions from ω to ω there is a function F from ω to the finite subsets of ω such that:1. For each m, F(m) has at most m + 1 elements, and2. for each f inthere are only finitely many m such that f(m) is not an element of F(m).The symbol A(κ) will denote the assertion above about κ. In the course of his proof, Bartoszynski also shows that the cardinality restriction in 1 is not sharp. Indeed, let (Rm: m < ω) be any sequence of integers such that for each m Rm, ≤ Rm+1, and such that limm→∞Rm = ∞. Then the truth of the assertion A(κ) is preserved if in 1 we say instead that1′. For each m, F(m) has at most Rm elements.We shall use this observation later on. We now define three more statements, denoted B(κ), C(κ) and D(κ), about cardinal number κ.


2001 ◽  
Vol 170 (3) ◽  
pp. 219-229 ◽  
Author(s):  
Aapo Halko ◽  
Saharon Shelah

1988 ◽  
Vol 102 (3) ◽  
pp. 681
Author(s):  
Jaime Ihoda ◽  
Saharon Shelah

2014 ◽  
Vol 165 (9) ◽  
pp. 1445-1469 ◽  
Author(s):  
Kojiro Higuchi ◽  
Takayuki Kihara

Sign in / Sign up

Export Citation Format

Share Document