Lebesque measure zero subsets of the real line and an infinite game

1996 ◽  
Vol 61 (1) ◽  
pp. 246-249 ◽  
Author(s):  
Marion Scheepers

Let denote the ideal of Lebesgue measure zero subsets of the real line. Then add() denotes the minimal cardinality of a subset of whose union is not an element of . In [1] Bartoszynski gave an elegant combinatorial characterization of add(), namely: add() is the least cardinal number κ for which the following assertion fails:For every family of at mostκ functions from ω to ω there is a function F from ω to the finite subsets of ω such that:1. For each m, F(m) has at most m + 1 elements, and2. for each f inthere are only finitely many m such that f(m) is not an element of F(m).The symbol A(κ) will denote the assertion above about κ. In the course of his proof, Bartoszynski also shows that the cardinality restriction in 1 is not sharp. Indeed, let (Rm: m < ω) be any sequence of integers such that for each m Rm, ≤ Rm+1, and such that limm→∞Rm = ∞. Then the truth of the assertion A(κ) is preserved if in 1 we say instead that1′. For each m, F(m) has at most Rm elements.We shall use this observation later on. We now define three more statements, denoted B(κ), C(κ) and D(κ), about cardinal number κ.

1982 ◽  
Vol 47 (2) ◽  
pp. 275-288 ◽  
Author(s):  
Arnold W. Miller

AbstractLet κB be the least cardinal for which the Baire category theorem fails for the real line R. Thus κB is the least κ such that the real line can be covered by κ many nowhere dense sets. It is shown that κB cannot have countable cofinality. On the other hand it is consistent that the corresponding cardinal for 2ω1 be ℵω. Similar questions are considered for the ideal of measure zero sets, other ω1, saturated ideals, and the ideal of zero-dimensional subsets of Rω1.


2004 ◽  
Vol 11 (3) ◽  
pp. 489-494
Author(s):  
A. Kharazishvili ◽  
A. Kirtadze
Keyword(s):  

Abstract The concept of measurability of real-valued functions with respect to various classes of measures is introduced and the associated notion of an absolutely nonmeasurable function is investigated. A characterization of such functions is given. Also, it is shown that functions produced by the classical Vitali partition of the real line are measurable with respect to the class of all extensions of the Lebesgue measure on this line.


1991 ◽  
Vol 56 (1) ◽  
pp. 103-107
Author(s):  
Maxim R. Burke

AbstractWe investigate the cofinality of the partial order κ of functions from a regular cardinal κ into the ideal of Lebesgue measure zero subsets of R. We show that when add () = κ and the covering lemma holds with respect to an inner model of GCH, then cf (κ) = max{cf(κκ), cf([cf()]κ)}. We also give an example to show that the covering assumption cannot be removed.


2019 ◽  
Vol 20 (04) ◽  
pp. 2050024
Author(s):  
Zhihui Yuan

Any Borel probability measure supported on a Cantor set included in [Formula: see text] and of zero Lebesgue measure on the real line possesses a discrete inverse measure. We study the validity of the multifractal formalism for the inverse measures of random weak Gibbs measures. The study requires, in particular, to develop in this context of random dynamics a suitable version of the results known for heterogeneous ubiquity associated with deterministic Gibbs measures.


1982 ◽  
Vol 14 (4) ◽  
pp. 811-832 ◽  
Author(s):  
Simeon M. Berman

Let X(t), , be an Ito diffusion process on the real line. For u > 0 and t > 0, let Lt(u) be the Lebesgue measure of the set . Limit theorems are obtained for (i) the distribution of Lt(u) for u → ∞and fixed t, and (ii) the tail of the distribution of the random variable max[0, t]X(s). The conditions on the process are stated in terms of the drift and diffusion coefficients. These conditions imply the existence of a stationary distribution for the process.


2000 ◽  
Vol 09 (02) ◽  
pp. 271-284 ◽  
Author(s):  
IKUO TAYAMA

We prove the following results concerning the first Betti numbers of abelian coverings of CP2 branched over line configurations: (1) An estimate of the first Betti numbers. (2) A characterization of central and general position line configurations in terms of the first Betti numbers of abelian coverings. (3) The first Betti numbers of the abelian coverings of the real line configurations up to 7 components.


1990 ◽  
Vol 55 (2) ◽  
pp. 674-677
Author(s):  
Janusz Pawlikowski

AbstractAny finite support iteration of posets with precalibre ℵ1 which has the length of cofinahty greater than ω1 yields a model for the dual Borel conjecture in which the real line is covered by ℵ1 strong measure zero sets.


1993 ◽  
Vol 45 (6) ◽  
pp. 1167-1183 ◽  
Author(s):  
F. H. Clarke ◽  
R. J. Stern ◽  
P. R. Wolenski

AbstractLet ƒ H → (—∞,∞] be lower semicontinuous, where H is a real Hilbert space. An approach based upon nonsmooth analysis and optimization is used in order to characterize monotonicity of ƒ with respect to a cone, as well as Lipschitz behavior and constancy. The results, which involve hypotheses on the proximal subgradient ∂ πƒ, specialize on the real line to yield classical characterizations of these properties in terms of the Dini derivate. They also give new extensions of these results to the multidimensional case. A new proof of a known characterization of convexity in terms of proximal subgradient monotonicity is also given.


2009 ◽  
Vol 42 (1) ◽  
pp. 73-80
Author(s):  
Małgorzata Filipczak ◽  
Elžbieta Wagner-Bojakowska

Abstract We consider two kinds of small subsets of the real line: the sets of strong measure zero and the microscopic sets. There are investigated the properties of these sets. The example of a microscopic set, which is not a set of strong measure zero, is given.


Sign in / Sign up

Export Citation Format

Share Document