Stokes flow of an incompressible micropolar fluid past a porous spheroidal shell

Author(s):  
T. Iyengar ◽  
T. Radhika

Stokes flow of an incompressible micropolar fluid past a porous spheroidal shellConsider a pair of confocal prolate spheroids S0and S1where S0is within S1. Let the spheroid S0be a solid and the annular region between S0and S1be porous. The present investigation deals with a flow of an incompressible micropolar fluid past S1with a uniform stream at infinity along the common axis of symmetry of the spheroids. The flow outside the spheroid S1is assumed to follow the linearized version of Eringen's micropolar fluid flow equations and the flow within the porous region is assumed to be governed by the classical Darcy's law. The fluid flow variables within the porous and free regions are determined in terms of Legendre functions, prolate spheroidal radial and angular wave functions and a formula for the drag on the spheroid is obtained. Numerical work is undertaken to study the variation of the drag with respect to the geometric parameter, material parameter and the permeability parameter of the porous region. An interesting feature of the investigation deals with the presentation of the streamline pattern.

2018 ◽  
Vol 388 ◽  
pp. 344-349
Author(s):  
D.V. Jayalakshmamma ◽  
P.A. Dinesh ◽  
D.V. Chandrashekhar

The numerical study of axi-symmetric, steady flow of an incompressible micropolar fluid past an impervious sphere is presented by assuming uniform flow far away from the sphere. The continuity, linear and angular momentum equations are considered for incompressible micropolar fluid in accordance with Eringen. The governing equations of the physical problem are transformed to ordinary differential equation with variable co-efficient by using similarity transformation method. The obtained differential equation is then solved numerically by assuming the shooting technique. The effect of coupling and coupling stress parameter on the properties of the fluid flow is studied and demonstrated by graphs.


2013 ◽  
Vol 18 (4) ◽  
pp. 399-411 ◽  
Author(s):  
Punnamchandar Bitla ◽  
Telikicherla Kandala Venkatacharyulu Iyengar

The paper deals with the pulsating flow of an incompressible micropolar fluid through a channel bounded by permeable beds. The fluid is injected into the channel from the lower permeable bed with a certain velocity and is sucked into the upper permeable bed with the same velocity. The flow between the permeable beds is assumed to be governed by micropolar fluid flow equations and that in the permeable regions by Darcy law. The Beavers–Joseph (BJ) slip boundary conditions are used at the interfaces of the permeable beds. The governing equations are solved analytically and the expressions for velocity, microrotation, mass flux and shear stress are obtained. The effects of diverse parameters on the velocity and microrotation are studied numerically and the results are presented through graphs.


The unsteady stokes flow of incompressible micropolar fluid between two porous plates is considered. The lower plate is subjected to periodic suction and different periodic injection is applied at the upper plate. Stream function for the flow is obtained and the variation of velocity function f  & g with  is shown graphically. The effects of the dimensionless parameters p, frequency parameter pt , micropolarity parameter pl and the microrotation parameter pj on the velocity functions f  and microrotation velocity function g are discussed and shown through the graphs.


Sign in / Sign up

Export Citation Format

Share Document