scholarly journals DESIGNING YOUR ENGINEERING CAREER: THE APPLICATION OF THE DESIGN PROCESS TO CAREER DEVELOPMENT

Author(s):  
Dr. Sean O' Brien ◽  
Carolyn Geddert

 Abstract – Students have often reported feeling unprepared for career planning, development and decision-making. The open-ended nature of career development may be analogous to the design space, and may therefore benefit from the application of the engineering design process. This teaching practice report discusses the authors’ experience implementing a seminar in an engineering program, which guides students to apply the engineering design process to their career development. The application of the design process to student career development may improve students’ confidence and success by reframing the problem into a structure that they are already proficient with.

Author(s):  
D. W. Ruth ◽  
M. G. Britton

If the teaching of engineering is indeed the practice of engineering, then it stands to reason that the development of engineering curricula can be treated as an engineering design problem. In this paper, the authors apply the engineering design process to develop a list of courses, for a Mechanical Engineering Program, that conforms to the constraints of the Canadian system of engineering accreditation. For the purpose of this exercise, the following steps are used to define the engineering design process: identical and delimit the problem, establish the outline of the solution (and alternatives), break the problem into its constituent parts, analyze the parts, synthesize the parts into a final configuration, and document the solution. The limits and constraints on the solution are based on the criteria specified by the Canadian Engineering Accreditation Board (CEAB), the syllabus specified by the Canadian Engineering Qualifications Board (CEQB), some common rules-of-thumb, and previously published work by the authors. By utilizing the engineering design process, schools of engineering and applied science can ensure that their curricula, at least at the level of the course specification, will conform to the CEAB and CEQB requirements. As a final exercise, variations on the curriculum are studied to analyze the possibility of introducing such additional elements as options and minors, expanded studies in the arts and humanities, and development of skills in additional languages.


Science Scope ◽  
2017 ◽  
Vol 041 (01) ◽  
Author(s):  
Nicholas Garafolo ◽  
Nidaa Makki ◽  
Katrina Halasa ◽  
Wondimu Ahmed ◽  
Kristin Koskey ◽  
...  

Procedia CIRP ◽  
2021 ◽  
Vol 100 ◽  
pp. 660-665
Author(s):  
Giovanni Formentini ◽  
Núria Boix Rodríguez ◽  
Claudio Favi ◽  
Marco Marconi

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Michael S. Rugh ◽  
Donald J. Beyette ◽  
Mary Margaret Capraro ◽  
Robert M. Capraro

Purpose The purpose of this study is to examine a week-long science, technology, engineering and mathematics (STEM) project-based learning (PBL) activity that integrates a new educational technology and the engineering design process to teach middle and high school students the concepts involved in rotational physics. The technology and teaching method described in this paper can be applied to a wide variety of STEM content areas. Design/methodology/approach As an educational technology, the dynamic and interactive mathematical expressions (DIME) map system automatically generates an interactive, connected concept map of mathematically based concepts extracted from a portable document format textbook chapter. Over five days, students used DIME maps to engage in meaningful self-guided learning within the engineering design process and STEM PBL. Findings Using DIME maps within a STEM PBL activity, students explored the physics behind spinning objects, proposed multiple creative designs and built a variety of spinners to meet specified criteria and constraints. Practical implications STEM teachers can use DIME maps and STEM PBL to support their students in making connections between what they learn in the classroom and real-world scenarios. Social implications For any classroom with computers, tablets or phones and an internet connection, DIME maps are an accessible educational technology that provides an alternative representation of knowledge for learners who are underserved by traditional methods of instruction. Originality/value For STEM teachers and education researchers, the activity described in this paper uses advances in technology (DIME maps and slow-motion video capture on cell phones) and pedagogy (STEM PBL and the engineering design process) to enable students to engage in meaningful learning.


Author(s):  
Victoria Zhao ◽  
Conrad S. Tucker

Information is transferred through a process consisting of an information source, a transmitter, a channel, a receiver and its destination. Unfortunately, during different stages of the engineering design process, there is a risk of a design idea or solution being incorrectly interpreted due to the nonlinearity of engineering design. I.e., there are many ways to communicate a single design idea or solution. This paper provides a comprehensive review and categorization of the possible sources of information loss at different stages of the engineering design process. Next, the authors present an approach that seeks to minimize information loss during certain stages of the engineering design process. The paper i) explores design process and dissemination methods in engineering design; ii) reviews prior work pertaining to these stages of the engineering design process and iii) proposes an information entropy metric that designers can utilize in order to quantify information loss at different stages of the engineering design process. Knowledge gained from this work will aid designers in selecting a suitable dissemination solution needed to effectively achieve a design solution.


Sign in / Sign up

Export Citation Format

Share Document