scholarly journals ENGINEERS-IN-RESIDENCE PROGRAMS AS A FRAMEWORK FOR INDUSTRY ENGAGEMENT IN UNDERGRADUATE ENGINEERING EDUCATION: CHALLENGES AND OPPORTUNITIES

Author(s):  
Marcia Friesen ◽  
Nadine Ibrahim ◽  
Grant McSorley ◽  
Stephen Mattucci

Industry engagement in undergraduate engineering education is a community-centred approach to learning that is hands-on and links the engineering theory to practice. This paper provides a review of existing Engineer-in-Residence (EIR) programs in Canada, including the University of Manitoba, Dalhousie University, University of Calgary, Ryerson University, University of Ottawa, and the University of Waterloo, as well as a brief international scan. We consider the motivations behind the institutions’ initiative to introduce EIR programs, different types of engagements, challenges, and opportunities. Programs are also examined externally relative to professional residency programs in business schools, among others, and relative to other forms of industry engagement in undergraduate engineering education. A brief overview of the history and role of EIRs within engineering programs is also presented. The paper will be of interest to those exploring a similar industry engagement framework at their institution, and offers a forward-looking perspective on ways to leverage the skills and experience of practicing engineers in preparing students to tackle the challenges of the future.

2007 ◽  
Vol 35 (3) ◽  
pp. 256-270 ◽  
Author(s):  
Nadia Kellam ◽  
Michelle Maher ◽  
James Russell ◽  
Veronica Addison ◽  
Wally Peters

Complex systems study, defined as an understanding of interrelationships between engineered, technical, and non-technical (e.g., social or environmental) systems, has been identified as a critical component of undergraduate engineering education. This paper assesses the extent to which complex systems study has been integrated into undergraduate mechanical engineering programs in the southeastern United States. Engineering administrators and faculty were surveyed and university websites associated with engineering education were examined. The results suggest engineering administrators and faculty believe that undergraduate engineering education remains focused on traditional engineering topics. However, the review of university websites indicates a significant level of activity in complex systems study integration at the university level, although less so at college and department levels.


Author(s):  
Scott Sciffer ◽  
Mahsood Shah

The University of Newcastle, Australia has a long history of providing enabling education which provides access and opportunity for students to participate in undergraduate education. The enabling programs at the University allow higher school leavers, and mature aged adults to prepare for undergraduate degrees. Students who complete enabling education at the University undertake undergraduate studies in various disciplines including engineering. This paper outlines the extent to which enabling programs have played an important role in widening the participation of disadvantaged students in engineering disciplines. The different levels of academic preparedness of students in enabling programs and barriers faced in learning require effective strategies for teaching and engaging students in learning. The paper outlines the strategy used in teaching an advanced level of mathematics to the diverse groups of students to prepare them for success in first year undergraduate engineering programs. While research on undergraduate engineering education is significant, limited studies have been undertaken on enabling or university preparatory programs and their impact in various professions.


Author(s):  
Michel Couturier ◽  
Dawn MacIsaac ◽  
Liuchen Chang

Following its rich tradition of over 150 years of excellence in engineering education, the Faculty of Engineering at the University of New Brunswick (UNB) is currently implementing an exciting first year program. In consultation with Atlantic businesses, governments and members of the Faculty, an Engineering Education Task Force was formed in the summer of 2003 with the mandate to enhance integrated learning in undergraduate engineering programs at UNB. The Task Force proposed a substantially-common first year program for all engineering disciplines with design projects in both the first and second terms. The design projects are used to integrate knowledge gained in the first year and are part of two new design courses. The first design course is centered on Design and Communications. The second design course is centered on Design and Computations. This new approach requires that teaching of core materials be integrated at a level that crosses disciplinary boundaries.


Author(s):  
Jen Rathlin ◽  
Eugene Li ◽  
Andrew Trivett

Abstract – Students entering undergraduate engineering programs lack the formative experiences of their precursors and are demanding more hands-on, practical, and engaging experiences as part of their education[1].  Starting in 2013, the University of Waterloo engaged in a pilot project to address these needs and to improve the student experience. This paper will discuss the challenges encountered in the establishment of the MME Clinic initiative, the implementation methods used to address these challenges, and lessons learned through the first four years of this project.  


2019 ◽  
Vol 1 (2) ◽  
pp. 74-84
Author(s):  
Dale Lackeyram ◽  
John R Donald ◽  
Richard Gorrie ◽  
Richard G Zytner

Tracking graduate outcomes is a new requirement for engineering education in Canada.  Working closely with curriculum developers and educational technologists, the School of Engineering at the University of Guelph has shown it is possible to put in place an effective process.  The process requires engaged participants, an open-mindedness and integrated technologies to collect and report the data.  Combining people, process and technology provides a way for data analysis to satisfy accreditation requirements and internal quality education metrics.  This paper describes the approach taken and identifies strengths, challenges, and opportunities to be successful, and support the ultimate goal of curriculum improvement.


Sign in / Sign up

Export Citation Format

Share Document