scholarly journals Specifics of turbo-alternator design with a high rotational speed of 6000 rpm

2021 ◽  
Vol 4 (398) ◽  
pp. 108-122
Author(s):  
Boris Skvortsov ◽  

Object and purpose of research. The object under study is a 36 МW turbo-alternator (TA) with electromagnetic excitation and a high rotational speed of 6000 rpm, which can be used as an option for ac electric power source of 100 Hz in ship electric power systems with a turbo-alternator plant. The purpose is to perform electromagnetic calculations to determine TA main data and technical characteristics, including the stator and rotor pack, their design, mass of active materials, etc. for comparison with a TA of the same power but 3000 rpm. Materials and methods. The studies are based on research and engineering data about investigations and design of double-pole industrial TA of 50 Hz as well as TA with a high current frequency (100 Hz and higher). For this purpose, the known formulas were used to estimate the size of TA active elements, excitation forces of stator and rotor windings, as well as methods for calculation of main TA parameters and technical characteristics. Main results. Design specifics of TA with a high rotational speed of 6000 rpm is identified, and results of electromagnetic estimations are obtained for a specific 36 MW turbo-alternator of 100 Hz with a forced close cycle cooling and better mass and size characteristics. Conclusions. The obtained results are of practical value, showing feasibility of developing a version of 36.0 МW TA with a rotational speed of 6000 rpm and significantly reduced specific mass and size characteristics – tentatively by 35–40 % as compared to the existing TA of the same power but with a speed of 3000 rpm.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1688 ◽  
Author(s):  
C. Birk Jones ◽  
Matthew Lave ◽  
William Vining ◽  
Brooke Marshall Garcia

An increase in Electric Vehicles (EV) will result in higher demands on the distribution electric power systems (EPS) which may result in thermal line overloading and low voltage violations. To understand the impact, this work simulates two EV charging scenarios (home- and work-dominant) under potential 2030 EV adoption levels on 10 actual distribution feeders that support residential, commercial, and industrial loads. The simulations include actual driving patterns of existing (non-EV) vehicles taken from global positioning system (GPS) data. The GPS driving behaviors, which explain the spatial and temporal EV charging demands, provide information on each vehicles travel distance, dwell locations, and dwell durations. Then, the EPS simulations incorporate the EV charging demands to calculate the power flow across the feeder. Simulation results show that voltage impacts are modest (less than 0.01 p.u.), likely due to robust feeder designs and the models only represent the high-voltage (“primary”) system components. Line loading impacts are more noticeable, with a maximum increase of about 15%. Additionally, the feeder peak load times experience a slight shift for residential and mixed feeders (≈1 h), not at all for the industrial, and 8 h for the commercial feeder.


Sign in / Sign up

Export Citation Format

Share Document