Cost-optimization model for reducing health and climate effects from residential wood combustion in Finland

2014 ◽  
Author(s):  
V.-V. Paunu ◽  
M. Savolahti ◽  
N. Karvosenoja ◽  
K. Kupiainen
Energy ◽  
2012 ◽  
Vol 48 (1) ◽  
pp. 118-127 ◽  
Author(s):  
Christian Milan ◽  
Carsten Bojesen ◽  
Mads Pagh Nielsen

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Qingyou Yan ◽  
Qian Zhang ◽  
Xin Zou

The study of traditional resource leveling problem aims at minimizing the resource usage fluctuations and obtaining sustainable resource supplement, which is accomplished by adjusting noncritical activities within their start and finish time. However, there exist limitations in terms of the traditional resource leveling problem based on the fixed project duration. This paper assumes that the duration can be changed in a certain range and then analyzes the relationship between the scarce resource usage fluctuations and project cost. This paper proposes an optimization model for the multiresource leveling problem. We take into consideration five kinds of cost: the extra hire cost when the resource demand is greater than the resource available amount, the idle cost of resource when the resource available amount is greater than the resource demand, the indirect cost related to the duration, the liquidated damages when the project duration is extended, and the incentive fee when the project duration is reduced. The optimal objective of this model is to minimize the sum of the aforementioned five kinds of cost. Finally, a case study is examined to highlight the characteristic of the proposed model at the end of this paper.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Linmin Hu ◽  
Wei Huang ◽  
Guofang Wang ◽  
Ruiling Tian

The redundancy optimization problem is formulated for an uncertain parallel-series system with warm standby elements. The lifetimes and costs of elements are considered uncertain variables, and the weights and volumes of elements are random variables. The uncertain measure optimization model (UMOM), the uncertain optimistic value optimization model (UOVOM), and the uncertain cost optimization model (UCOM) are developed through reliability maximization, lifetime maximization, and cost minimization, respectively. An efficient simulation optimization algorithm is provided to calculate the objective values and optimal solutions of the UMOM, UOVOM, and UCOM. A numerical example is presented to illustrate the rationality of the models and the feasibility of the optimization algorithm.


2020 ◽  
Vol 26 (10) ◽  
pp. 94-108
Author(s):  
Saja Hadi Aldhamad ◽  
Sedqi Esmaeel Rezouki

The main aim of this research is to introduce financing cost optimization and different financing alternatives. There are many studies about financing cost optimization. All previous studies considering the cost of financing have many shortcomings, some considered only one source of financing as a credit line without taking into account different financing alternatives. Having only one funding alternative powers, restricts contractors and leads to a very specific financing model. Although it is beneficial for the contractor to use a long-term loan to minimize interest charges and prevent a substantial withdrawal from his credit line, none of the existing financial-based planning models have considered long-term loans in their models or included a schedule of borrowed money and a repayment schedule with interest rates. The aim of this study is not only to eliminate the shortcomings of previous studies but also to incorporate a financing optimization model for various funding alternatives available to contractors in terms of funding sources and forms, cash provision times, interest rates and repayment options. This work proposes a financing optimization model, not only to remove the limitations but also to find optimal financing costs while offering the financing schedule without increasing the project duration and adjusting the starting times of the activities.


Sign in / Sign up

Export Citation Format

Share Document