scholarly journals Forecasting low-cost housing demand in an urban area in Malaysia using artificial neural networks: Batu Pahat, Johor

Author(s):  
N. Y. Zainun ◽  
I. A. Rahman ◽  
M. Eftekhari
Inventions ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 45 ◽  
Author(s):  
Waleed I. Hameed ◽  
Baha A. Sawadi ◽  
Safa J. Al-Kamil ◽  
Mohammed S. Al-Radhi ◽  
Yasir I. A. Al-Yasir ◽  
...  

Prediction of solar irradiance plays an essential role in many energy systems. The objective of this paper is to present a low-cost solar irradiance meter based on artificial neural networks (ANN). A photovoltaic (PV) mathematical model of 50 watts and 36 cells was used to extract the short-circuit current and the open-circuit voltage of the PV module. The obtained data was used to train the ANN to predict solar irradiance for horizontal surfaces. The strategy was to measure the open-circuit voltage and the short-circuit current of the PV module and then feed it to the ANN as inputs to get the irradiance. The experimental and simulation results showed that the proposed method could be utilized to achieve the value of solar irradiance with acceptable approximation. As a result, this method presents a low-cost instrument that can be used instead of an expensive pyranometer.


Author(s):  
S. Aloshyn ◽  
I. Khomenko ◽  
N. Fursova

Low-cost, reliable and quick screening diagnosis of coronavirus can be implemented on the basis of intelligent technologies for analyzing a set of signs and symptoms with solving the problem of pattern recognition in the basis of artificial neural networks. The high degree of coronavirus infection diagnostic procedure uncertainty, the vector dimension of input factor-symptoms, fuzzy conditioning and poor formalizability of the subject condition connection with these symptoms require appropriate analytical tools. An analysis of the problem and possible solutions allows justifying the feasibilit y of implementing screening diagnostics as a solution to the problem of nonlinear optimization in a multidimensional space of high-dimensional factors and states. Artificial neural networks with compulsory training on a representative sample were chosen as a tool for implementing the project. The proposed technology brings diagnostics of coronavirus infection closer to full automation, robotization and intellectualization of complex monitoring (diagnostic) systems as the most promising technology for pattern recognition in systems with a high degree of entropy and allows you to solve the problem at the lowest cost and required performance indicators.


2012 ◽  
pp. 1-16 ◽  
Author(s):  
Norhisham Bakhary ◽  
Khairulzan Yahya ◽  
Chin Nam Ng

Kebelakangan ini ramai penyelidik mendapati ‘Artificial Neural Network’ (ANN) untuk digunakan dalam berbagai bidang kejuruteraan awam. Banyak aplikasi ANN dalam proses peramalan menghasilkan kejayaan. Kajian ini memfokuskan kepada penggunaan siri masa ‘Univariate Neural Network’ untuk meramalkan permintaan rumah kos rendah di daerah Petaling Jaya, Selangor. Dalam kajian ini, beberapa kes bagi sesi latihan dan ramalan telah dibuat untuk mendapatkan model terbaik bagi meramalkan permintaan rumah. Nilai RMSE yang paling rendah yang diperolehi bagi tahap validasi adalah 0.560 dan nilai MAPE yang diperolehi adalah 8.880%. Hasil kajian ini menunjukkan kaedah ini memberikan keputusan yang boleh diterima dalam peramalan permintaan rumah berdasarkan data masa lalu. Kata kunci: Univariate Neural Network, permintaan rumah kos rendah, RMSE, MAPE Recently researchers have found the potential applications of Artificial Neural Network (ANN) in various fields in civil engineering. Many attempts to apply ANN as a forecasting tool has been successful. This paper highlighted the application of Time Series Univariate Neural Network in forecasting the demand of low cost house in Petaling Jaya district, Selangor, using historical data ranging from February 1996 to Appril 2000. Several cases of training and testing were conducted to obtain the best neural network model. The lowest Root Mean Square Error (RMSE) obtained for validation step is 0.560 and Mean Absolute Percentage Error (MAPE) is 8.880%. These results show that ANN is able to provide reliable result in term of forecasting the housing demand based on previous housing demand record. Key words: Time Series Univariate Neural Network, low cost housing demand, RMSE, MAPE


Sign in / Sign up

Export Citation Format

Share Document