scholarly journals Fast and Parallel Decomposition of Constraint Satisfaction Problems

Author(s):  
Georg Gottlob ◽  
Cem Okulmus ◽  
Reinhard Pichler

Constraint Satisfaction Problems (CSP) are notoriously hard. Consequently, powerful decomposition methods have been developed to overcome this complexity. However, this poses the challenge of actually computing such a decomposition for a given CSP instance, and previous algorithms have shown their limitations in doing so. In this paper, we present a number of key algorithmic improvements and parallelisation techniques to compute so-called Generalized Hypertree Decompositions (GHDs) faster. We thus advance the ability to compute optimal (i.e., minimal-width) GHDs for a significantly wider range of CSP instances on modern machines. This lays the foundation for more systems and applications in evaluating CSPs and related problems (such as Conjunctive Query answering) based on their structural properties.

1995 ◽  
Vol 2 ◽  
pp. 447-474 ◽  
Author(s):  
P. David

Many studies have been carried out in order to increase thesearch efficiency of constraint satisfaction problems; among them,some make use of structural properties of the constraintnetwork; others take into account semantic properties of theconstraints, generally assuming that all the constraints possessthe given property. In this paper, we propose a new decompositionmethod benefiting from both semantic properties of functional constraints (not bijective constraints) and structuralproperties of the network; furthermore, not all the constraints needto be functional. We show that under some conditions, the existenceof solutions can be guaranteed. We first characterize a particularsubset of the variables, which we name a root set. We thenintroduce pivot consistency, a new local consistency which is aweak form of path consistency and can be achieved in O(n^2d^2)complexity (instead of O(n^3d^3) for path consistency), and wepresent associated properties; in particular, we show that anyconsistent instantiation of the root set can be linearly extended to a solution, which leads to the presentation of the aforementioned new method for solving by decomposing functional CSPs.


2021 ◽  
Vol 26 ◽  
pp. 1-40
Author(s):  
Wolfgang Fischl ◽  
Georg Gottlob ◽  
Davide Mario Longo ◽  
Reinhard Pichler

To cope with the intractability of answering Conjunctive Queries (CQs) and solving Constraint Satisfaction Problems (CSPs), several notions of hypergraph decompositions have been proposed—giving rise to different notions of width, noticeably, plain, generalized, and fractional hypertree width (hw, ghw, and fhw). Given the increasing interest in using such decomposition methods in practice, a publicly accessible repository of decomposition software, as well as a large set of benchmarks, and a web-accessible workbench for inserting, analyzing, and retrieving hypergraphs are called for. We address this need by providing (i) concrete implementations of hypergraph decompositions (including new practical algorithms), (ii) a new, comprehensive benchmark of hypergraphs stemming from disparate CQ and CSP collections, and (iii) HyperBench, our new web-interface for accessing the benchmark and the results of our analyses. In addition, we describe a number of actual experiments we carried out with this new infrastructure.


2021 ◽  
Vol 68 (5) ◽  
pp. 1-50
Author(s):  
Georg Gottlob ◽  
Matthias Lanzinger ◽  
Reinhard Pichler ◽  
Igor Razgon

Hypertree decompositions (HDs), as well as the more powerful generalized hypertree decompositions (GHDs), and the yet more general fractional hypertree decompositions (FHDs) are hypergraph decomposition methods successfully used for answering conjunctive queries and for solving constraint satisfaction problems. Every hypergraph H has a width relative to each of these methods: its hypertree width hw(H) , its generalized hypertree width ghw(H) , and its fractional hypertree width fhw(H) , respectively. It is known that hw(H)≤ k can be checked in polynomial time for fixed k , while checking ghw(H)≤ k is NP-complete for k ≥ 3 . The complexity of checking fhw(H)≤ k for a fixed k has been open for over a decade. We settle this open problem by showing that checking fhw(H)≤ k is NP-complete, even for k=2 . The same construction allows us to prove also the NP-completeness of checking ghw(H)≤ k for k=2 . After that, we identify meaningful restrictions that make checking for bounded ghw or fhw tractable or allow for an efficient approximation of the fhw .


2021 ◽  
Vol 178 (4) ◽  
pp. 315-346
Author(s):  
Domenico Cantone ◽  
Marianna Nicolosi-Asmundo ◽  
Daniele Francesco Santamaria

We present a KE-tableau-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic 𝒟ℒ〈4LQSR,×〉(D) (𝒟ℒD4,×, for short). Our application solves the main TBox and ABox reasoning problems for 𝒟ℒD4,×. In particular, it solves the consistency and the classification problems for 𝒟ℒD4,×-knowledge bases represented in set-theoretic terms, and a generalization of the Conjunctive Query Answering problem in which conjunctive queries with variables of three sorts are admitted. The reasoner, which extends and improves a previous version, is implemented in C++. It supports 𝒟ℒD4,×-knowledge bases serialized in the OWL/XML format and it admits also rules expressed in SWRL (Semantic Web Rule Language).


2013 ◽  
Vol 44 (2) ◽  
pp. 131-156 ◽  
Author(s):  
Laura Climent ◽  
Richard J. Wallace ◽  
Miguel A. Salido ◽  
Federico Barber

Author(s):  
Marlene Arangú ◽  
Miguel Salido

A fine-grained arc-consistency algorithm for non-normalized constraint satisfaction problems Constraint programming is a powerful software technology for solving numerous real-life problems. Many of these problems can be modeled as Constraint Satisfaction Problems (CSPs) and solved using constraint programming techniques. However, solving a CSP is NP-complete so filtering techniques to reduce the search space are still necessary. Arc-consistency algorithms are widely used to prune the search space. The concept of arc-consistency is bidirectional, i.e., it must be ensured in both directions of the constraint (direct and inverse constraints). Two of the most well-known and frequently used arc-consistency algorithms for filtering CSPs are AC3 and AC4. These algorithms repeatedly carry out revisions and require support checks for identifying and deleting all unsupported values from the domains. Nevertheless, many revisions are ineffective, i.e., they cannot delete any value and consume a lot of checks and time. In this paper, we present AC4-OP, an optimized version of AC4 that manages the binary and non-normalized constraints in only one direction, storing the inverse founded supports for their later evaluation. Thus, it reduces the propagation phase avoiding unnecessary or ineffective checking. The use of AC4-OP reduces the number of constraint checks by 50% while pruning the same search space as AC4. The evaluation section shows the improvement of AC4-OP over AC4, AC6 and AC7 in random and non-normalized instances.


2001 ◽  
Vol 1 (6) ◽  
pp. 713-750 ◽  
Author(s):  
KRZYSZTOF R. APT ◽  
ERIC MONFROY

We study here a natural situation when constraint programming can be entirely reduced to rule-based programming. To this end we explain first how one can compute on constraint satisfaction problems using rules represented by simple first-order formulas. Then we consider constraint satisfaction problems that are based on predefined, explicitly given constraints. To solve them we first derive rules from these explicitly given constraints and limit the computation process to a repeated application of these rules, combined with labeling. We consider two types of rule here. The first type, that we call equality rules, leads to a new notion of local consistency, called rule consistency that turns out to be weaker than arc consistency for constraints of arbitrary arity (called hyper-arc consistency in Marriott & Stuckey (1998)). For Boolean constraints rule consistency coincides with the closure under the well-known propagation rules for Boolean constraints. The second type of rules, that we call membership rules, yields a rule-based characterization of arc consistency. To show feasibility of this rule-based approach to constraint programming, we show how both types of rules can be automatically generated, as CHR rules of Frühwirth (1995). This yields an implementation of this approach to programming by means of constraint logic programming. We illustrate the usefulness of this approach to constraint programming by discussing various examples, including Boolean constraints, two typical examples of many valued logics, constraints dealing with Waltz's language for describing polyhedral scenes, and Allen's qualitative approach to temporal logic.


Sign in / Sign up

Export Citation Format

Share Document