scholarly journals Learning Interpretable Models in the Property Specification Language

Author(s):  
Rajarshi Roy ◽  
Dana Fisman ◽  
Daniel Neider

We address the problem of learning human-interpretable descriptions of a complex system from a finite set of positive and negative examples of its behavior. In contrast to most of the recent work in this area, which focuses on descriptions expressed in Linear Temporal Logic (LTL), we develop a learning algorithm for formulas in the IEEE standard temporal logic PSL (Property Specification Language). Our work is motivated by the fact that many natural properties, such as an event happening at every n-th point in time, cannot be expressed in LTL, whereas it is easy to express such properties in PSL. Moreover, formulas in PSL can be more succinct and easier to interpret (due to the use of regular expressions in PSL formulas) than formulas in LTL. The learning algorithm we designed, builds on top of an existing algorithm for learning LTL formulas. Roughly speaking, our algorithm reduces the learning task to a constraint satisfaction problem in propositional logic and then uses a SAT solver to search for a solution in an incremental fashion. We have implemented our algorithm and performed a comparative study between the proposed method and the existing LTL learning algorithm. Our results illustrate the effectiveness of the proposed approach to provide succinct human-interpretable descriptions from examples.

10.29007/bm4c ◽  
2018 ◽  
Author(s):  
David Basin ◽  
Srdjan Krstic ◽  
Dmitriy Traytel

We present Aerial, a tool for the online monitoring of metric regular properties. Aerial supports both the standard metric temporal logic (MTL) and the more expressive meric dynamic logic (MDL) as its property specification language. Unlike MTL, which is restricted to star-free properties, MDL can express all metric regular properties by generalizing MTL’s temporal operators to arbitrary regular expressions. Aerial’s distinguishing feature is its ability to monitor an event stream using memory logarithmic in the event rate. This space efficiency is achieved by altering how Aerial outputs its monitoring verdicts.


2014 ◽  
Vol 513-517 ◽  
pp. 927-930
Author(s):  
Zhi Cheng Wen ◽  
Zhi Gang Chen

Object-Z, an extension to formal specification language Z, is good for describing large scale Object-Oriented software specification. While Object-Z has found application in a number of areas, its utility is limited by its inability to specify continuous variables and real-time constraints. Linear temporal logic can describe real-time system, but it can not deal with time variables well and also can not describe formal specification modularly. This paper extends linear temporal logic with clocks (LTLC) and presents an approach to adding linear temporal logic with clocks to Object-Z. Extended Object-Z with LTLC, a modular formal specification language, is a minimum extension of the syntax and semantics of Object-Z. The main advantage of this extension lies in that it is convenient to describe and verify the complex real-time software specification.


Algorithms ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 18
Author(s):  
Michael Li ◽  
Santoso Wibowo ◽  
Wei Li ◽  
Lily D. Li

Extreme learning machine (ELM) is a popular randomization-based learning algorithm that provides a fast solution for many regression and classification problems. In this article, we present a method based on ELM for solving the spectral data analysis problem, which essentially is a class of inverse problems. It requires determining the structural parameters of a physical sample from the given spectroscopic curves. We proposed that the unknown target inverse function is approximated by an ELM through adding a linear neuron to correct the localized effect aroused by Gaussian basis functions. Unlike the conventional methods involving intensive numerical computations, under the new conceptual framework, the task of performing spectral data analysis becomes a learning task from data. As spectral data are typical high-dimensional data, the dimensionality reduction technique of principal component analysis (PCA) is applied to reduce the dimension of the dataset to ensure convergence. The proposed conceptual framework is illustrated using a set of simulated Rutherford backscattering spectra. The results have shown the proposed method can achieve prediction inaccuracies of less than 1%, which outperform the predictions from the multi-layer perceptron and numerical-based techniques. The presented method could be implemented as application software for real-time spectral data analysis by integrating it into a spectroscopic data collection system.


Sign in / Sign up

Export Citation Format

Share Document