scholarly journals The Galerkin-Implicit Method for Solving Nonlinear Variable Coefficients Hyperbolic Boundary Value Problem

2021 ◽  
pp. 3997-4005
Author(s):  
Jamil A. Ali Al-Hawasy ◽  
Nuha Farhan Mansour

This paper has the interest of finding the approximate solution (APPS) of a nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP).  The given boundary value problem is written in its discrete weak form (WEFM) and proved  have a unique solution, which is obtained via the mixed Galerkin finite element with implicit method that reduces the problem to solve the Galerkin nonlinear algebraic system  (GNAS). In this part, the predictor and the corrector techniques (PT and CT, respectively) are proved at first convergence and then are used to transform  the obtained GNAS to a linear GLAS . Then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are studied. Some illustrative examples are used, where the results are given by figures that show the efficiency and accuracy for the method.

2020 ◽  
pp. 161-169
Author(s):  
Jamil A. Ali Al-Hawasy ◽  
Eman H. Mukhalef Al-Rawdanee

This paper is concerned with studying the numerical solution for the discrete classical optimal control problem (NSDCOCP) governed by a variable coefficients nonlinear hyperbolic boundary value problem (VCNLHBVP). The DSCOCP is solved by using the Galerkin finite element method (GFEM) for the space variable and implicit finite difference scheme (GFEM-IFDS) for the time variable to get the NS for the discrete weak form (DWF) and for the discrete adjoint weak form (DSAWF) While, the gradient projection method (GRPM), also called the gradient method (GRM), or the Frank Wolfe method (FRM) are used to minimize the discrete cost function (DCF) to find the DSCOC. Within these three methods, the Armijo step option (ARMSO) or the optimal step option (OPSO) are used to improve the discrete classical control (DSCC). Finally, some illustrative examples for the problem are given to show the accuracy and efficiency of the methods.


2020 ◽  
pp. 2303-2314
Author(s):  
Eman H. Mukhalef Al-Rawdanee ◽  
Jamil A. Ali Al-Hawasy Al-Hawasy

This paper deals with testing a numerical solution for the discrete classical optimal control problem governed by a linear hyperbolic boundary value problem with variable coefficients. When the discrete classical control is fixed, the proof of the existence and uniqueness theorem for the discrete solution of the discrete weak form is achieved. The existence theorem for the discrete classical optimal control and the necessary conditions for optimality of the problem are proved under suitable assumptions. The discrete classical optimal control problem (DCOCP) is solved by using the mixed Galerkin finite element method to find the solution of the discrete weak form (discrete state). Also, it is used to find the solution for the discrete adjoint weak form (discrete adjoint) with the Gradient Projection method (GPM) , the Gradient method (GM), or the Frank Wolfe method (FWM) to the DCOCP. Within each of these three methods, the Armijo step option (ARSO) or the optimal step option (OPSO) is used to improve (to accelerate the step) the solution of the discrete classical control problem. Finally, some illustrative numerical examples for the considered discrete control problem are provided. The results show that the GPM with ARSO method is better than GM or FWM with ARSO methods. On the other hand, the results show that the GPM and GM with OPSO methods are better than the FWM with the OPSO method.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Amar Benkerrouche ◽  
Mohammed Said Souid ◽  
Kanokwan Sitthithakerngkiet ◽  
Ali Hakem

AbstractIn this manuscript, we examine both the existence and the stability of solutions to the implicit boundary value problem of Caputo fractional differential equations of variable order. We construct an example to illustrate the validity of the observed results.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Sh. Rezapour ◽  
B. Azzaoui ◽  
B. Tellab ◽  
S. Etemad ◽  
H. P. Masiha

In this paper, we consider a multiterm semilinear fractional boundary value problem involving Caputo fractional derivatives and investigate the existence of positive solutions by terms of different given conditions. To do this, we first study the properties of Green’s function, and then by defining two lower and upper control functions and using the wellknown Schauder’s fixed-point theorem, we obtain the desired existence criteria. At the end of the paper, we provide a numerical example based on the given boundary value problem and obtain its upper and lower solutions, and finally, we compare these positive solutions with exact solution graphically.


2003 ◽  
Vol 475 ◽  
pp. 303-331 ◽  
Author(s):  
E. S. BENILOV

We examine the stability of a quasi-geostrophic vortex in a two-layer ocean with a thin upper layer on the f-plane. It is assumed that the vortex has a sign-definite swirl velocity and is localized in the upper layer, whereas the disturbance is present in both layers. The stability boundary-value problem admits three types of normal modes: fast (upper-layer-dominated) modes, responsible for equivalent-barotropic instability, and two slow baroclinic types (mixed- and lower-layer-dominated modes). Fast modes exist only for unrealistically small vortices (with a radius smaller than half of the deformation radius), and this paper is mainly focused on the slow modes. They are examined by expanding the stability boundary-value problem in powers of the ratio of the upper-layer depth to the lower-layer depth. It is demonstrated that the instability of slow modes, if any, is associated with critical levels, which are located at the periphery of the vortex. The complete (sufficient and necessary) stability criterion with respect to slow modes is derived: the vortex is stable if and only if the potential-vorticity gradient at the critical level and swirl velocity are of the same sign. Several vortex profiles are examined, and it is shown that vortices with a slowly decaying periphery are more unstable baroclinically and less barotropically than those with a fast-decaying periphery, with the Gaussian profile being the most stable overall. The asymptotic results are verified by numerical integration of the exact boundary-value problem, and interpreted using oceanic observations.


Author(s):  
Qun Chen

AbstractLet M, N be Riemannian manifolds, f: M → N a harmonic map with potential H, namely, a smooth critical point of the functional EH(f) = ∫M[e(f)−H(f)], where e(f) is the energy density of f. Some results concerning the stability of these maps between spheres and any Riemannian manifold are given. For a general class of M, this paper also gives a result on the constant boundary-value problem which generalizes the result of Karcher-Wood even in the case of the usual harmonic maps. It can also be applied to the static Landau-Lifshitz equations.


Sign in / Sign up

Export Citation Format

Share Document