Stability and constant boundary-value problems of harmonic maps with potential

Author(s):  
Qun Chen

AbstractLet M, N be Riemannian manifolds, f: M → N a harmonic map with potential H, namely, a smooth critical point of the functional EH(f) = ∫M[e(f)−H(f)], where e(f) is the energy density of f. Some results concerning the stability of these maps between spheres and any Riemannian manifold are given. For a general class of M, this paper also gives a result on the constant boundary-value problem which generalizes the result of Karcher-Wood even in the case of the usual harmonic maps. It can also be applied to the static Landau-Lifshitz equations.

2005 ◽  
Vol 16 (09) ◽  
pp. 1017-1031 ◽  
Author(s):  
QUN HE ◽  
YI-BING SHEN

By simplifying the first and the second variation formulas of the energy functional and generalizing the Weitzenböck formula, we study the stability and the rigidity of harmonic maps between Finsler manifolds. It is proved that any nondegenerate harmonic map from a compact Einstein Riemannian manifold with nonnegative scalar curvature to a Berwald manifold with nonpositive flag curvature is totally geodesic and there is no nondegenerate stable harmonic map from a Riemannian unit sphere Sn (n > 2) to any Finsler manifold.


2016 ◽  
Vol 18 (06) ◽  
pp. 1550076 ◽  
Author(s):  
Yuan-Jen Chiang

We study the exponential stress energy associated to an exponentially harmonic map between Riemannian manifolds. We prove three equivalent statements for a horizontally weakly conformal exponentially harmonic map between Riemannian manifolds. We also investigate the stability of exponentially harmonic maps.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Amar Benkerrouche ◽  
Mohammed Said Souid ◽  
Kanokwan Sitthithakerngkiet ◽  
Ali Hakem

AbstractIn this manuscript, we examine both the existence and the stability of solutions to the implicit boundary value problem of Caputo fractional differential equations of variable order. We construct an example to illustrate the validity of the observed results.


1994 ◽  
Vol 36 (1) ◽  
pp. 77-80 ◽  
Author(s):  
Leung-Fu Cheung ◽  
Pui-Fai Leung

For each p ∈ [2, ∞)a p-harmonic map f:Mm→Nn is a critical point of the p-energy functionalwhere Mm is a compact and Nn a complete Riemannian manifold of dimensions m and n respectively. In a recent paper [3], Takeuchi has proved that for a certain class of simply-connected δ-pinched Nn and certain type of hypersurface Nn in ℝn+1, the only stable p-harmonic maps for any compact Mm are the constant maps. Our purpose in this note is to establish the following theorem which complements Takeuchi's results.


2003 ◽  
Vol 475 ◽  
pp. 303-331 ◽  
Author(s):  
E. S. BENILOV

We examine the stability of a quasi-geostrophic vortex in a two-layer ocean with a thin upper layer on the f-plane. It is assumed that the vortex has a sign-definite swirl velocity and is localized in the upper layer, whereas the disturbance is present in both layers. The stability boundary-value problem admits three types of normal modes: fast (upper-layer-dominated) modes, responsible for equivalent-barotropic instability, and two slow baroclinic types (mixed- and lower-layer-dominated modes). Fast modes exist only for unrealistically small vortices (with a radius smaller than half of the deformation radius), and this paper is mainly focused on the slow modes. They are examined by expanding the stability boundary-value problem in powers of the ratio of the upper-layer depth to the lower-layer depth. It is demonstrated that the instability of slow modes, if any, is associated with critical levels, which are located at the periphery of the vortex. The complete (sufficient and necessary) stability criterion with respect to slow modes is derived: the vortex is stable if and only if the potential-vorticity gradient at the critical level and swirl velocity are of the same sign. Several vortex profiles are examined, and it is shown that vortices with a slowly decaying periphery are more unstable baroclinically and less barotropically than those with a fast-decaying periphery, with the Gaussian profile being the most stable overall. The asymptotic results are verified by numerical integration of the exact boundary-value problem, and interpreted using oceanic observations.


2017 ◽  
Vol 14 (07) ◽  
pp. 1750098 ◽  
Author(s):  
Ahmed Mohammed Cherif

In this paper, we prove that any bi-harmonic map from a compact orientable Riemannian manifold without boundary [Formula: see text] to Riemannian manifold [Formula: see text] is necessarily constant with [Formula: see text] admitting a strongly convex function [Formula: see text] such that [Formula: see text] is a Jacobi-type vector field (or [Formula: see text] admitting a proper homothetic vector field). We also prove that every harmonic map from a complete Riemannian manifold into a Riemannian manifold admitting a proper homothetic vector field, satisfying some condition, is constant. We present an open problem.


2006 ◽  
Vol 2006 ◽  
pp. 1-9 ◽  
Author(s):  
Yuri E. Gliklikh ◽  
Peter S. Zykov

The two-point boundary value problem for second-order differential inclusions of the form(D/dt)m˙(t)∈F(t,m(t),m˙(t))on complete Riemannian manifolds is investigated for a couple of points, nonconjugate along at least one geodesic of Levi-Civitá connection, whereD/dtis the covariant derivative of Levi-Civitá connection andF(t,m,X)is a set-valued vector with quadratic or less than quadratic growth in the third argument. Some interrelations between certain geometric characteristics, the distance between points, and the norm of right-hand side are found that guarantee solvability of the above problem forFwith quadratic growth inX. It is shown that this interrelation holds for all inclusions withFhaving less than quadratic growth inX, and so for them the problem is solvable.


Sign in / Sign up

Export Citation Format

Share Document